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Is it possible to obtain a small cell sample from a primary tumor and, with the 
appropriate methodologies and mathematics, make some predictions about 
a tumor’s virulence?  Is it possible to create a breast cancer prognostic 
procedure and model that works well for any laboratory in the world?  Can 
DNA histogram analysis be complemented with other prognostic markers to 
better separate high and low risk patients?  The major purpose of this lecture 
is to answer all these questions with data from several large clinical studies.
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Approach
• Develop a set of DNA analysis rules by minimizing 

differences between parallel analyses of common 
DNA histograms.

• Apply these rules to the analysis of a large primary 
database of DNA histograms with appropriate clinical 
follow-up.

• Develop a set of adjustments to DNA ploidy and S-
Phase Fraction (SPF) estimates that minimize 
potential variability and maximize the model's 
prognostic strength.

• Evaluate the prognostic model's ability to stratify 
patients in the primary database and then apply the 
same model and procedures to two other large 
databases and compare patient stratifications.

A set of analysis rules was developed to insure that all cell cycle analyses were 
reproducible.  These rules were applied to both a large primary database (Baylor, 
n=992 DNA histograms) and a confirming database (Sweden, n=210) with clinical 
follow-up data.  In laboratory we will examine how these rules are implemented in 
some detail.  

A detailed statistical analysis of the primary database revealed a number of 
necessary SPF adjustments and ploidy reclassifications that minimized spurious 
correlations between SPF and ploidy and maximized a Cox proportional hazard's 
model's prognostic strength.  The procedures and prognostic model developed from 
the primary database were then applied to large confirming databases and the 
patient stratifications were compared. 
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Flow cytometry DNA Ploidy and S-Phase prognostic variables.  DNA Ploidy is a 
binary variable, 1 for DNA diploids and 2 for non-diploids.  S-Phase for DNA 
diploid histograms is the fraction of nuclei or cells in S-Phase compared to other 
phases of the cell cycle.  S-Phase for DNA non-diploid histograms is the fraction of 
nuclei or cells in the aneuploid S-Phase compared to the corresponding aneuploid
phase of the cell cycle.  For DNA multiploids, the S-Phase is calculated as the total 
number of events in all aneuploid S-Phases divided by the sum of all aneuploid
events, expressed as a percent. 
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Generation of DNA Analysis Rules
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In order to obtain consistent DNA analysis results, it is very important that the DNA 
histogram modeler follow very specific rules.  At this stage of the analysis, the rules 
are designed so that different modelers will obtain the same exact data.

The above flow chart demonstrates how the DNA analysis rules were initially 
generated.  A common set of DNA histograms was used in the process.  If 
independent operators arrived at different answers, a rule was found to eliminate the 
differences.  Iterating through this process for hundreds of histograms generated a 
set of rules that if followed, allowed operators to achieve reproducible results.  
General model type was found to be the most important difference to minimize.  
Most of these rules are targeted at guiding operators to choose the same kind of 
DNA model.   The rules also cover more subtle differences such as range 
positioning strategies.

Note.  Over the last 20 years there have been numerous discussions and arguments 
on the best way of analyzing DNA histograms.  The approach taken here was to let 
the above algorithm generate the rules and not to introduce personal biases into the 
decision.  
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DNA Analysis Rules
         A: Model Selection Check 

The most important step in analyzing DNA histograms in a consistent manner is 
checking the correct ploidy model for a particular DNA histogram.  In some cases 
this process may require several analyses to achieve the correct and optimal fit, 
i.e. the RCS value should be as low as possible (< 3.0).  Use the rules below to 
help guide you through this process. 

1. General Considerations 

a) If two model components are of similar shape and 
are highly overlapped (>75%) it may be necessary to add 
additional constraints to the model or, in the worse 
case, disable the model component of lesser 
importance. 

b) If a G2M peak is clearly visible and well-defined, 
allow its mean to be fitted (float). 

c) Always model S-Phase as a single, broadened 
rectangle. 

d) After the appropriate model is selected, optimize the 
linearity settings in the cell-cycle analysis software to 
the data. 

e) (ModFitLT only) Try to standardize the configuration, 
peak finder and autoanalysis settings. 

f) When choosing between two very similar models, 
select the one that gives consistent results with slightly 
different range settings. 

An example of this rule might be when trying to use an aneuploid model with a 
near-tetraploid type of histogram.  If the aneuploid model only works with very 
specific range settings, choose the tetraploid model instead. 

Example
Rule
Fragment…

Small example fragment of the final rule set.  See notebook for full printout of the 
rules.
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Example Operator Reproducibility: 
With and Without DNA Analysis Rules
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Before Rules After Rules

Correlation of %SPF estimates before and after use of the developed rules on a set 
of common DNA histograms.  Convergence of operator estimates occurs after a 
series of training exercises on defined sets of DNA histograms.

Note.  When doing this kind of reproducibility study it is very important not only to 
show that one has reproducibility between independent users, but also that the data 
generated is relevant (see next slide). 
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Operator 4

The above slide shows four Relapse-free survival curves from data independently 
generated by four operators.  The operators followed the DNA analysis rules 
described earlier.  The primary data is from the Sweden Study, Centers 1 and 2 
(n=121).   The Chi-square probabilities for these analyses were:  operator 1,  
p<0.0003; operator 2, p<0.001; operator 3, p<0.003 and operator 4, p<0.001.

These data demonstrate that the rules not only create reproducible data but the data 
is clinically relevant. 
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Approach
• Develop a set of DNA analysis rules by tolerating no 

or minimal differences between parallel analyses of 
common DNA histograms.

• Apply these rules to the analysis of a large primary 
database of DNA histograms with appropriate clinical 
follow-up.

• Develop a set of adjustments to DNA ploidy and SPF 
estimates that minimize potential variability and 
maximize the model's prognostic strength.

• Evaluate the prognostic model's ability to stratify 
patients in the primary database and then apply the 
same model and procedures to another large 
database and compare patient stratifications.

Cell cycle analysis was performed on the primary database following the rules 
described in the preceding section. 
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Primary Flow Cytometry Database 
(Baylor Study) Overview

Baylor*
(Clark,

Nichols)

Preparation

Type: Frozen-Pulverized (>200mg)
Fluor: PI
Method: Krishan
Cytometer: EPICS 753
Cases: 992

Example DNA Histograms
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Baylor Study

A total of 961 node-negative cases was initially considered for analysis.  Most analyses were done 
on 935 cases having acceptable DNA histograms, %Diploid CV’s of less than or equal to 7.0 and total 
modeled events of greater or equal to 15,000.   Median follow-up for those patients alive with no 
recurrence is 6.6 years.  Recurrence-free survival is defined as the time interval between diagnosis 
and distant metastatic recurrence of tumor.  Median age is 61 years.   Adjuvant chemotherapy 
treatment breakdown is 775 ( 80.6%) none, 3 (0.3%) single alkylator, 145 (15.1%) combined 
alkylators, 6 (0.6%) not specified and 32 (3.3%) unknown.  Endocrine treatment breakdown is 640 
(66.6%) none, 272 (28.3%) single additive hormone, 6 (0.6%) single ablative hormone, 9 (0.9%) 
multiple and 34 (3.5%) unknown.  The radiation therapy breakdown is not known.  Preparative 
technique for DNA Histograms is pulverized frozen tissue stained with propidium iodide.

The primary database originates from primary breast cancer samples which were 
frozen and then pulverized and subsequently stained with PI following the Krishan 
method.  A EPICS 753 acquired the data and stored it in a listmode format.

A very aggressive approach was followed in modeling the 992 DNA histograms in 
the primary dataset.  All peaks were modeled regardless of size. Skewed and very 
near diploid peaks were modeled as aneuploid populations.  This aggressive 
approach made it possible to create low risk ploidy reclassification rules that were 
based entirely on statistical analysis of patient outcome data and not on any other 
subjective criteria or operator bias.  
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Confirmatory Studies
Sweden Study
Three Swedish laboratories provided data from a total number of 210 node-negative 
patients: center1, Lund (42); center 2, Linköping (79 ); and center 3, Stockholm (89).  
The median follow-up for patients alive with no recurrence is 5.9 years.  Recurrence-
free survival is defined as the time interval between diagnosis and distant metastatic
recurrence of tumor.   Node-negative adjuvant therapy breakdown is 24 (11%) 
unknown, 116 (55%) no adjuvant therapy, 70 (33%) tamoxifen and 0 (0%) cytostatic
chemotherapy.   No radiation therapy was given to any patients. Preparative 
technique for DNA histograms is frozen tissue stained with propidium iodide.

French Study
Four French institutions provided data from a total number of 220 node-negative 
patients: Angers (24), Marseille (57), Saint Cloud (69) and Tours (70) receiving no 
chemo or hormonal adjuvant therapy.  The radiation therapy breakdown is 46 (20.9%) 
none, 174 (79.1%) treated.  The median follow-up for patients alive with no recurrence 
is 8.5 years.  Recurrence-free survival is defined as the time interval between 
diagnosis and occurrence of distant metastatic disease.  The median age is 58 years.   
Preparative technique for DNA histograms is frozen tissue stained with propidium
iodide.

A very important element of this study design is that the rules developed on the 
Baylor database will be tested on two other studies to confirm the validity of the 
approach.
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Is Raw DNA Ploidy a Prognostic Factor?

1: Diploid, 2: Non-diploid

Ploidy
Study n Beta StdDev p-value
Baylor 988 0.227 0.145 0.112
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Before showing you the necessary adjustments to DNA ploidy and S-phase, let's 
look at the situation without any adjustments.  Suppose we go back to the Baylor 
Study and test to see if raw ploidy (1=DNA Diploid, 2=Non-Diploid) is a 
statistically significant prognostic variable.

The results shown in this table should surprise you.  The Baylor Study shows 
absolutely no significance for DNA ploidy.  Many investigators probably ran into 
this observation and either published negative results for DNA ploidy or decided not 
to publish.  When the Sweden Study was analyzed in the same exact manner as the 
Baylor Study, its DNA ploidy variable was significant at p<0.01 (not shown).

Why would DNA ploidy be significant for the Sweden Study but not for the Baylor 
Study?  Why would there be this kind of variability with relatively large studies?  
We believe the variability in findings between these two databases is indicative of 
what has been happening in the flow cytometry literature.  As you soon will see, the 
answer to this dilemma is found in the details.   Oddly enough, those investigators 
who were very careful in their analysis were the least likely to see significance.  
Let's see why.
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In the picture above, we see some typical DNA histograms.  A classic DNA 
aneuploid histogram is shown in Panel A, demonstrating DNA Index (DI) and
Aneuploid Fraction (AF) calculations.  In the 25X Y-zoom graph immediately 
below Panel A are labels identifying debris, aggregates and some important peak 
locations. Panel B shows a DNA histogram with a very low AF (<5%) and Panel C, 
a near diploid G1 population with a DI of 1.12.

As mentioned earlier, a very aggressive DNA analysis approach was undertaken for 
the DNA histograms in the Baylor Study.  If a small aberrant population was found 
(see panel B for a typical example), it was modeled as a DNA aneuploid population.  
Also, if a diploid G0G1 peak was split, we assumed that there was a near-diploid 
aneuploid population present and appropriately modeled it (see panel C). The 
question to ask at this point is whether there is a better way of determining when an 
aberrant peak is important from a prognostic point-of-view.  In other words, can we 
find some objective rules to follow to know when and when not to model aberrant 
peaks and/or populations.
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Ploidy Reclassification Logic
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With a large database like the Baylor Study, we can determine the optimal values of 
a number of decision points such as the size of an aberrant peak or the closeness of a 
near-diploid population.    

The way this was done is shown in the above slide.  If a DNA histogram was 
classified as a simple DNA diploid, it was given a low risk ploidy score of 1.  If the 
DNA histogram had some other kind of ploidy pattern (DNA hypodiploid, 
aneuploid, tetraploid, or multiploid), we used some yet-to-be-determined 
reclassification logic to either classify this case as low risk or high risk.  In other 
words, we made the assumption that within the apparent DNA aneuploid ploidy
patterns, there were some patterns that had a low prognostic risk.

The above reclassification is very simple, but it allows us to determine some very 
important criteria that have traditionally been a "seat-of-the-pants" type of decision.  
Let's go through a few examples is see how this works before summarizing all the 
reclassification rules.   
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Reclassification Basis: %Aneuploid Fraction

Aneuploidy: Optimal Reclassification Using Aneuploid Fraction

Baylor Study

The above graph is only looking at simple DNA aneuploids, excluding DNA tetraploids, 
hypodiploids and multiploids.  The data shown in the graph answers the question, when is it "best" to 
consider an unusual bump in a DNA histogram as a high risk ploidy pattern.
On the X-axis we have %aneuploid fraction, which is essentially the size of this "extra" population.  
On the Y-axis we have the Cox Proportional Hazards Model p-value.  Lower p-values indicate that 
there is a significant difference between the low risk and high risk ploidy patterns for the relevant 
DNA histograms.
Let's start at the first point (upper-left).  This p-value is what you would find if there were no 
reclassification scheme (e.g. traditional ploidy analysis), no significance in this case (see slide 11).
The second p-value is obtained when those DNA aneuploid histograms that have a %Aneuploid
Fraction of less than or equal to 5% are reclassified as low risk (the example in panel B on slide 13 is 
about 5% so it would fall into this category).  All other aneuploid histograms are considered high 
risk. 
If we proceed with this analysis with successively higher Aneuploid Fraction% thresholds for this 
reclassification, we note that there is a definite minimum p-value, 0.02,  at an aneuploid fraction of 
20%.
Thus, DNA aneuploid histograms that have <=20% aneuploid fraction are best reclassified as a low 
risk ploidy pattern, which is our first reclassification rule.  
A few points need to be emphasized at this point.  The first is that it is very important to have a large 
study like the Baylor Study to do this type of analysis, especially for some of the rules that follow.  
Second, these rules can sometimes be verified in other studies. For example, the Sweden Study 
shows the exact same minimum value for DNA aneuploids as the Baylor Study.  Third, there is no 
subjectivity in this analysis.  We are simply letting the data determine these criteria.
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Reclassification Basis: DNA Index

This slide demonstrates when a shoulder or split peak should be considered a high risk ploidy
pattern.

The aneuploid fraction reclassification discussed in the previous slide is in effect for this analysis.  
Note that the preceding slide demonstrated a minimum at 0.02 which is where this analysis starts 
(left most point).

The X-axis is now DNA index.  The second point shows the p-value associated with reclassifying 
DNA aneuploid histograms with a DI of less than or equal to 1.05.

Again, there is a definite minimum p-value at a DI or 1.12.

This observation should come as some relief to those of us involved in interpreting DNA histograms 
since the high risk near-diploid peaks are quite separate with typical %CV's. 

Also note that this observation may partially explain why low resolution technologies such as image 
analysis have historically been successful in showing the prognostic significance of DNA ploidy.  
Now, you can understand my point about why careful investigators were likely not to find prognostic 
significance for DNA ploidy.  By attempting to model small peaks and skewed/split peaks, they were 
stacking the deck against their finding significance.  No wonder our literature is filled with 
contradictory results for this important prognostic factor.
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Summary of Adjustments

Notation Target Description
DNA Ploidy Adjustments (ADJP)

PH1 Hypodiploid <=15% AF reclassified as low risk. 
PH2 Hypodiploid  0.95<=DI<1.0 reclassified as low risk. 
PA1 Aneuploid <=20% AF reclassified as low risk. 
PA2 Aneuploid 1.0<DI<=1.13 reclassified as low risk. 
PT1 Tetraploid <=20% AF reclassified as low risk. 
PT2 Tetraploid (Mean DI - 0.04)<=DI<=(Mean DI + 0.04) reclassified as low risk. 
PM1 Multiploid <=25% AF reclassified as low risk. 

S-Phase Adjustments (ADJS)
SD1 Diploid S-Phase DS/AF to adjust for diploid dilution effect.
SA1 Aneuploid S-Phase %AS - b1*(100-%AF)/%AF to compensate for aneuploid fraction effect.
SA2 Aneuploid S-Phase Substitution of the average SA1 adjusted AS with %AF’s less or equal to 5%.

The first seven rows in the above chart show all the DNA ploidy reclassification 
rules.  Note PA1 and PA2 are the ones we just showed in the examples.  The others 
were arrived at in the same way.
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Low Risk Ploidy High Risk Ploidy

Diploid Non-Diploid (ND)

Apply the minimum aneuploid fraction rule (A)

Diploid

Apply the near hyper-diploid DI rule (B)

Diploid

Apply the tetraploid window rule (C)

Diploid

A

A

A

B

B C

ND-A

ND-A-B

ND-A-B-C

Ploidy Reclassification

Slide provided by Pär–Ola Bendahl

Here is another way of looking at what we're doing.  The shapes in green are low-
risk and those in red are high-risk.  As we come up with the reclassification rules we 
are moving DNA histograms from the high-risk category to low-risk.  
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Importance of DNA Ploidy
Reclassification

Reclassification Global Chi-Square Beta Std Error p
No 2.38 0.224 0.147 0.12
Yes 16.3 0.548 0.135 0.000049

n=961 Cases

Cox Proportional Hazards Analysis

Let's go back to our original analysis and add all the previously discussed DNA 
Ploidy reclassifications.  As can be seen in the above table, by applying these 
reclassifications our DNA Ploidy variable becomes highly significant.
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The above graph is another way of appreciating how the reclassification enhances 
the prognostic effect of DNA Ploidy.  It also shows how this approach works for the 
other two confirming databases (Sweden and French studies).  The graphs represent 
relapse-free survivals (RFS) with (black) and without (light gray) DNA Ploidy
reclassification for Baylor Study (left), Sweden Study (center) and French Study 
(right).  Low-risk stratifications correspond to DNA diploid (gray) or DNA diploid 
plus low-risk non-diploids (black).  High-risk stratifications correspond to DNA 
non-diploid (gray) or non-diploid minus low-risk non-diploids (black).  Arrows 
indicate the improved separation of patient stratifications with DNA Ploidy
reclassification.
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DNA S-Phase

As you might imagine, there are similar types of adjustments to make with DNA S-
Phase.
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Aneuploid Fraction and SPF Estimation

• Adjust non-diploid SPF's.

Improves prognostic strength of SPF.
Reduces "technical" correlation between high SPF and aneuploidy.
Reduces laboratory variability due to preparation differences.

• Adjust diploid SPF's.

Scale diploid SPF in order to pool with aneuploid SPF's.

In many published studies, there is a significant correlation between S-Phase 
estimates and DNA Ploidy, making it difficult to reliably demonstrate independence 
of these prognostic variables.  DNA diploid histograms generally have low S-Phase 
estimates and aneuploid histograms have higher estimates.  Although there is 
evidence that aneuploid cells do in fact have slightly higher S-Phases than diploid 
cells, the difference is quite modest and does not adequately explain the high 
correlation generally found between these two variables.

The data that will be shown in the next few slides demonstrate that the principle 
reasons for the correlation between DNA Ploidy and SPF are technical in nature and 
can easily be compensated for by an appropriate set of adjustments.
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Aneuploid Fraction (fA) Vs. S-Phase Fraction (sA)

Fit: Aneuploid Fraction Effect Formula
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As the aneuploid fraction, fA, approaches zero there is a strong tendency for the 
modeling software to over-estimate aneuploid %SPF’s (%sA).  Presumably this 
tendency is because of an inability of modeling software to distinguish very low 
levels of S-Phase from background debris and aggregates originating primarily from 
the non-aneuploid cells.  The three graphs at the top show three points in this 
database (Sweden, Center 3).

Notice the regression curve for this data.  As the Aneuploid Fraction approaches 
zero there seems to be a high S-phase bias in our estimates.  If we assume that the 
reason for this bias is due to a signal-to-noise type of explanation, we can derive this 
function as: %SA = b0 + b1*(100-%fA)/%fA . We can use this function to fit the data 
and then use the variables to adjust for this effect (%SA - b1*(100-%fA)/%fA).
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Model: v46 = b0 + b1*(100-v45)/v45
y=(7.283644)+(1.17861)*(100-x)/x
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Other Study

Model: v46 = b0 + b1*(100-v45)/v45
y=(7.721016)+(0.5984415)*(100-x)/x
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Model: v46 = b0 + b1*(100-v45)/v45
y=(6.43886)+(0.70216)*(100-x)/x
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Baylor Study

Study-Dependent Aneuploid Fraction Effect

The above graphics show this "aneuploid fraction effect" from three other studies.

We have found that the exact coefficients for these regressions depend on the source 
of the DNA histograms and thus are probably influenced by the sample preparation 
and instrument; therefore, each study must be independently adjusted for this effect.   
Please note that you don't need clinical follow-up data to perform this adjustment.
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Rescaling Diploid %S 
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5.95/0.84 = 7.08

First, let's examine a few DNA aneuploid histograms…

-Total %S is less than the Aneuploid %S because of a diploid dilutional effect.
-Total %S can be rescaled to equal the Aneuploid %S by dividing by the aneuploid fraction*.

*: Assumes diploid S is zero

Note that…

The other spurious correlation between SPF and ploidy is due to the difficulty in 
pooling diploid and aneuploid SPF's.  In order to better understand how the diploid 
SPF's are scaled so they can be properly pooled with the aneuploid SPF's, we first 
examine some aneuploid histograms.  Notice that the total %S (or average %S) is 
always less than the aneuploid %S because of a diploid (non-tumor) dilutional
effect.  Also note that the total %S can be rescaled to equal the aneuploid %S by 
dividing by the aneuploid or tumor fraction. 
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Rescaling Diploid %S 

Diploid %S or Total %S: 4.50

Rescaled %S: 4.50/0.50 = 9.0

Tumor Fraction: ???

Now, let's examine a few DNA diploid histograms…
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Approximate Tumor Fraction with Aneuploid Fraction Mean
(e.g. 0.50)

In DNA Diploid histograms, the diploid %S is equivalent to total or average %S by 
definition.  Therefore to convert the diploid %S to a scale that is equivalent to 
aneuploid %S, we divide the %S by the tumor fraction for the sample.  If this value 
is not known, it can be crudely approximated as the average aneuploid fraction 
value.  The above example shows the calculation assuming the average aneuploid
fraction was observed to be 0.5. 
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Diploid S-phase Adjustment
Composite S-phase?

The perfect prognostic indicator…

40% Diploids

60% Aneuploids

The next few slides demonstrate the advantages of scaling the diploid S-phase 
(Composite S-phase).  The left panel shows some simulated data where tumor S-
phase is almost a perfect prognostic indicator.  There is practically a linear 
relationship between the magnitude of the tumor S-phase and an index of the 
relative risk of relapse.

The right panel shows the same cases that have been randomly assigned to either a 
DNA diploid state (40%) or DNA aneuploid state (60%).
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Diploid S-phase Adjustment
Composite S-phase?

Scaling difference between 
Dip %S and Aneuploid %S

The left panel shows the distribution of tumor fractions for DNA aneuploids and 
diploids.  The distribution for the DNA aneuploids is measurable, but the DNA 
diploids is not, at least not without an additional tumor marker.  The average tumor 
fraction is about the same for the DNA diploids and aneuploids, 0.4.

The right panel shows what happens to Dip %S for the DNA diploids as compared 
to the Aneuploid %S.  Since the S-phase calculation in DNA diploids is lowered by 
the presence of non-tumor cells and the aneuploid S-phase is not, these two S-
phases are at two different scales and should not be combined.



Lecture: DNA Histogram Analysis and 
Breast Cancer Prognosis

6/9/2004

Bagwell 28

Diploid S-phase Adjustment
Composite S-phase?

Total or Average S-phase Composite S-phase

The left panel shows the total or average S-phases for this population.  As can be 
seen the variance due to the tumor fraction variance affects both the diploid and 
aneuploid S-phases.  By rescaling S-phase (divide by average aneuploid fraction), 
one effectively adds the same amount of variance in the population for the diploid 
S-phases, but the aneuploid S-phases are not affected.  This is the reason that the 
Composite S-phase is recommended as the prognostic indicator.



Lecture: DNA Histogram Analysis and 
Breast Cancer Prognosis

6/9/2004

Bagwell 29

Importance of SPF Adjustments
Adjustments r* Chi-Square** p-value**

Raw*** 0.42 3.78 0.039
Adjusted S**** 0.07 10.27 0.0006

*:  Correlation coefficient between ploidy (0=diploid, 1=non-diploid) and 
SPF.  The 0.42 is significant at p<0.05.

**:     Cox Proportional Hazards Parameter p-value, n=961 cases.

***:    DS for DNA diploid cases, AS for non-diploid cases.

****:   Adjusted DS and AS values (SD1, SN1 and SN2).

How important are these S-Phase adjustments?

If the S-Phases are not adjusted for both the aneuploid fraction and the diploid 
normal dilution effects, there is a significant correlation between DNA ploidy and 
SPF, 0.42, and a rather modest p-value.  Statisticians would normally either drop the 
S-Phase or the DNA Ploidy in the analysis due to this very high correlation (usually 
the DNA Ploidy was dropped).

If we do both adjustments, the correlation between DNA Ploidy and S-Phase is 
reduced and the p-value becomes more significant.

One last comment before leaving this slide.  The diploid S-Phase rescaling does not 
infer that there is no measurable biologic difference in S-Phases between DNA 
diploids and aneuploids.  It has long been known that S-Phases from diploid tumors 
are normally lower than aneuploid tumors.  It is merely a mechanism to allow us to 
appropriately pool these S-Phases in order that we may construct a prognostic 
model from both DNA Ploidy and S-Phase.   
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DNA S-Phase – Ploidy (S-P) 
Prognostic Model

N Chi-Square P value RR 95%CL
Model 935 27.0 0.000002 3.50 2.1-5.7

Parameter Beta SE P value Mean r
ADJP 0.700 0.169 0.00004 1.40
AJDS 0.0295 0.00953 0.002 7.44 -0.033

Index 33rd % 67th % Formula
SPI - - 0.700*(ADJP-1.40) + 0.0295*(ADJS-7.44)
RRI 0.73 1.33 Exp(SPI)

The above table summarizes a Cox proportional hazards analysis of the previously 
described adjusted S-phase (ADJS) and DNA Ploidy (ADJP) for the Baylor Study 
(n=935). The model P value, 0.000002, and the ADJP and ADJS parameter P 
values, 0.00004 and 0.002, are highly significant. The ADJP and ADJS beta 
coefficients, 0.700 and 0.0295 along with their respective means are used to create a 
composite S-phase and DNA Ploidy Index (SPI).  The Exp(SPI) or RRI is a 
prognostic model that assigns a patient a relative risk given specific values of ADJP 
and ADJS.  RRI is an easily understood means of conveying the prognostic 
importance of both DNA Ploidy and S-phase and can be easily extended to include 
other important prognostic variables (we'll see this in just a moment).  
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Approach
• Develop a set of DNA analysis rules by tolerating no 

or minimal differences between parallel analyses of 
common DNA histograms.

• Apply these rules to the analysis of a large primary 
database of DNA histograms with appropriate clinical 
follow-up.

• Develop a set of adjustments to DNA ploidy and SPF 
estimates that minimize potential variability and 
maximize the model's prognostic strength.

• Evaluate the prognostic model's ability to stratify 
patients in the primary database and then apply the 
same model and procedures to another large 
database and compare patient stratifications.

In order to make sure the procedures developed described earlier are not unique for 
the primary database, we apply the same adjustments and prognostic model to 
independent and confirming databases.  If the patients stratify in a similar manner as 
the Baylor Study we confirm our approach.
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S-P Model Results

French Study - Baylor Multivariate Model
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Sweden Stratifications, Baylor Model (SPI)
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Baylor SPI Model
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French Study - Baylor Multivariate Model
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Sweden Stratifications, Baylor Model (SPI)
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Baylor SPI Model
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How well do the Baylor RRI’s stratify patients into low, intermediate and high risk 
categories?  Can the same RRI model be used to stratify Sweden and French study 
patients into similar risk categories? 

Panel A shows how well the Baylor prognostic model stratifies the 935 patients into 
low, intermediate and high risk categories.  Also shown on the graphs are the 
percentages in each risk category and RR, a measure of overall relative risk.  When 
the same model was applied to other large studies such as the Sweden, Panel B, and 
French, Panel C, studies, similar highly significant patient stratifications were 
observed. 
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How does SPI compare with other prognostic factors 
such as primary size, menopausal status, estrogen 

receptor, progesterone receptor and histologic grade? 

Study Prognostic Variable Beta SE P Value
Baylor S-phase/DNA ploidy Index 0.837 0.198 0.00003
n=935 Primary Size 0.515 0.181 0.005

Menopausal Status -0.316 0.182 0.09
Progesterone Receptor 0.075 0.190 0.7

Estrogen Receptor -0.047 0.208 0.9

Sweden S-phase/DNA ploidy Index 1.472 0.483 0.003
n=210 Menopausal Status -1.010 0.347 0.004

Estrogen Receptor -0.967 0.383 0.01
Primary Size 0.406 0.504 0.5

French Menopausal Status -1.242 0.364 0.0007
n=220 S-phase/DNA ploidy Index 1.383 0.466 0.003

Primary Size 0.915 0.339 0.007
Progesterone Receptor -0.357 0.436 0.5
SBR (Histologic Grade) -0.240 0.318 0.5

Estrogen Receptor 0.101 0.464 0.9

How does our S-Phase/DNA Ploidy prognostic model stack up against other well-
known prognostic markers?

The above table summarizes a Cox proportional hazards multivariate analysis of all 
the recorded prognostic variables for the Baylor, Sweden and French Studies.  The 
prognostic variables are ranked according to their P values within each study.  S-
phase/DNA ploidy index (SPI) was a very strong prognostic factor in all the studies.  
A stepwise elimination of variables did not change the order of importance of any of 
the prognostic variables.
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Can we improve the prognostic strength of the SPI 
model by adding primary size and menopausal 

status as additional prognostic variables? 

N Chi-Square P value RR 95%CL
Model 935 39.39 0.00000002 3.8 2.4-6.1

Correlation Matrix
Parameter Beta SE P value Mean SPI pT MS

SPI 0.869 0.191 0.000005 -0.00136 1
pT 0.525 0.180 0.004 0.514 -0.139 1
MS -0.318 0.182 0.08 0.742 0.126 0.055 1

Risk Index 33.0th % 67th % Formula
RRIM 0.82 1.24 Exp(0.869*(SPI+0.00136) + 0.525*(pT-0.514)-0.318*(MS-0.742))

Since the primary tumor size (pT) and menopausal status (MS) are easy prognostic 
variables to obtain, we have used them to further augment the Breast Cancer 
Prognostic model.

The above table summarizes a Cox proportional hazards multivariate analysis of S-
phase/Ploidy Index (SPI), primary size (pT) and menopausal status (MS) for the 
Baylor Study (n=935).  The model is highly significant with a relative risk (RR) of 
3.8.  Very little correlation is observed between the three prognostic variables.  The 
multivariate relative risk index (RRIM) is formed from the beta coefficients and 
means of each of the prognostic variables.  The 33rd and 67th tertile boundaries of 
all the RRIM’s are 0.82 and 1.24 respectively. 
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How well does this multivariate model that includes SPI, primary size 
and menopausal status stratify patients into low, intermediate and 

high risk groups for the Baylor, Sweden and French studies? 

Baylor Sweden French
Multivariate Model (SPI, pT, MS) - Baylor Study
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Multivariate Prognostic Model (SPI, pT MS) - Sweden Study
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French Study - Baylor Multivariate Model
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Baylor Sweden French
Multivariate Model (SPI, pT, MS) - Baylor Study
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Multivariate Prognostic Model (SPI, pT MS) - Sweden Study
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French Study - Baylor Multivariate Model
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French Study - Baylor Multivariate Model
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Sweden Stratifications, Baylor Model (SPI)
Complete  Censored

 Low Risk
 Int
 High0 1 2 3 4 5 6 7 8 9 10

Time (Years)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ob

ab
ili

ty
 R

el
ea

se
 F

re
e 

Su
rv

iv
al

 (R
FS

)

Baylor SPI Model
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French Study - Baylor Multivariate Model
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Sweden Stratifications, Baylor Model (SPI)
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Baylor SPI Model
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+pT + MS 

The above graphs show this model enhancement using relapse-free survival curves.  
The top set of three panels shows just the stratification power of using S-Phase and 
DNA Ploidy.  When primary size (pT) and menopausal status (MS) is added, the 
stratifications improve.  Pay particular attention to the Chi-square probability values 
that appear in the lower-left part of each panel.
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Multivariate Prognostic Model
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How important is the ability to stratify node-negative patients?

Giving oncologists such clear cut patient stratifications for node-negative breast 
cancer patients can only improve the overall management of this disease.   The low-
risk group, for example, perhaps should not receive adjuvant chemotherapy and 
should instead be followed carefully.  The high-risk group, which is almost identical 
to the RFS curve of node-positive women, should perhaps receive a more aggressive 
therapy.

How important is this test to cytometry?  Consider the above graph of incidences.  
In 1999 over 170,000 women were diagnosed with breast cancer and over 40,000 
died in the same interval of time.  According to the National Breast Cancer 
Foundation, every 2 minutes a woman is diagnosed with breast cancer in America.  
In 2003 it is estimated that 212,600 new cases of breast cancer will occur with over 
40,000 deaths attributed to breast cancer (American Cancer Society).

This incidence was greater than leukemia, lymphoma and AIDS combined for the 
same year.  Most patients when initially diagnosed with breast cancer are node-
negative and it is quite likely that this will continue due to earlier diagnosis of the 
disease.
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Conclusions
Are S-phase and DNA Ploidy strong independent prognostic variables?

Yes, when properly adjusted, both S-phase and DNA Ploidy become highly significant independent prognostic 
variables.

When optimally combined, can they effectively stratify patients in other large studies?

Yes, the relative risk index (RRI) stratifies patients in both the French and Sweden studies into highly significant 
risk groups.

Can the analysis of DNA histograms be standardized?
Yes, by following a strict set of rules, DNA analysis operators can expect to obtain consistent S-phase values.

How does SPI compare to other prognostic factors such as primary size, estrogen receptor, 
progesterone receptor, menopausal status and histologic grade?

SPI was consistently one of the stronger prognostic factors for all the tested studies.  Both primary size and 
menopausal status were also important prognostic factors.

Can the SPI prognostic model be improved by adding primary size and menopausal status 
prognostic variables?

Yes, the prognostic strength of the model for all studies improved when primary size and menopausal status 
were added to the model.


