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Abstract: 
The remarkable success of cytometry over the last thirty years is largely due to 
its uncanny ability to display populations that vastly differ in numbers and 
fluorescence intensity on one scale.  The log (L) transform, either implemented in 
hardware as a log amplifier, or in software, normalizes signals or channels such 
that these populations appear as clearly discernable peaks.  With the advent of 
multiple fluorescence cytometry, spectral-crossover compensation of these 
signals has been necessary to properly interpret the data.  Unfortunately, since 
compensation is a subtractive process, it can produce negative and zero valued 
data.  The log transform is undefined for these values and as a result, forces 
computer algorithms to truncate these values, creating a few problems for 
Cytometrists.   
 
Data truncation biases displays making properly compensated data appear 
undercompensated; thus, enticing many operators to over-compensate their 
data.  Also, events truncated into the first histogram channel are not normally 
visible with typical two dimensional graphic displays, hiding a large number of 
events and obscuring the true proportionality of negative distributions.  In 
addition, the L transform creates unequal binning which can dramatically distort 
negative population distributions.   
 
The HyperLogTM (HL) transform is a log-like transform that admits negative, zero, 
and positive values.  The transform is a hybrid type of transform specifically 
designed for compensated data.  One of its parameters allows it to smoothly 
transition from a logarithmic to linear type of transform which is ideal for 
compensated data.  The HL transform is easily implemented in computer 
systems and results in display systems that present compensated data in an 
unbiased manner.  
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Introduction 
Since Cytometry’s infancy, scientists and engineers have known about the large 
dynamic range of many molecules on and within cells.  If typical 
immunofluorescence data were presented on a linear scale, it would be difficult, if 
not impossible, to visually appreciate cell populations separated by large intensity 
differences for one or more measured parameters.  
 
Solving this display problem required a display transform that not only 
compressed the absolute dynamic range of fluorescence signals from these 
molecules, but also normalized their relative differences. The logarithmic (L) 
transform was almost the perfect mathematical solution to this display problem 
and cytometers were engineered such that some signals could be logarithmically 
amplified before digitization, storage, and display (1).  Cytometry’s success has 
in large part been due to this ability to visualize immunologically defined 
populations on a single log scale.  The L transform and its inverse are typically 
defined as,  
 

L x( ) log x( )
r
d
⋅ x 1≥if

0 otherwise

E y( ) 10
y

d

r
⋅

 

where x, the relative linear channels, is in the set of all real 

numbers;  L(x) is restricted to the interval [0,r), and E(y), 

[1,10^d); r is the analog to digital (ADC) resolution; and d is the 

number of decades for x’s dynamic range. 

  
The independent variable, x, of the L transform can admit numbers in the real 
domain, but only those numbers equal or greater to some threshold, normally set 
to one, are evaluated by the log function.  All other values of x cause the L 
transform to return a zero.  The L transform can be implemented in hardware as 
a logarithmic amplifier or in software as shown above.  Either way, the L 
transform must protect against taking the log of a value less than or equal to 
zero.  The E transform is the inverse of L such that E(L(x))=x for x>=1.  The 
restricted range of x in this equivalency creates a number of problematic issues 
for both graphics and analysis of L transformed data.    
 
Figure 1A and B illustrates the positive attributes of the L transform (see M&M, 
Example 1 for details).  Figure 1A shows two hypothetical populations on a single 
parameter linear scale.  The events that make up the right-most population, H, 
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are normally distributed with a relatively arbitrary mean and standard deviation 
(SD).  The events that comprise the left-most population, SL, are multiplicatively 
scaled to 1% of the H population, maintaining a constant coefficient of variation 
(CV).  The large reduction in intensity and variance compresses the SL 
population into a few channels making it difficult to appreciate as a separate 
population.    
 
If the same data are L transformed (see Fig. 1B), the SL population is visually 
distinct with the same apparent SD as H.  The positive characteristics of the L 
transform are that it minimizes the mean and variance differences for populations 
with similar CV’s.       
 
Unfortunately, the L transform also has some well-known disadvantages.  Zero 
and negative valued data are undefined and must be truncated to zero.  In 
addition, there are pronounced binning effects that dramatically affect the 
distribution of populations near the origin.     
 
To better illustrate these problems, Fig. 1C again shows a parent population, H.  
The H population events are translocated to 1% of their original intensity, forming 
a TL population that has both negative and positive values (see M&M, Example 2 
for details).  When these data are L transformed, TL is distributed over much of 
the axis.  A peak is observed in the middle portion of the axis that continually 
decreases in frequency until the origin, where about half the TL population is 
accumulated into the first histogram channel.  For data that are translocated to or 
near the origin, the L transform is not a suitable because low intensity population 
SD’s or variances are not preserved and their distributions are highly distorted. 
    
The ability to analyze and graph data defined over the real domain of numbers 
with a log-like transform has wide ranging applications in many scientific 
disciplines.  A solution to the log problem was first published by Johnson in 1949 
(2) where he proposed using a generalized inverse hyperbolic sine (IHS) 
function, Su,  to define a log-like transform that spanned the real number domain 
from negative to positive infinity.       
 
In 1981 Bickel and Doksum (3) proposed a modification to the well-known Box-
Cox (BC) transform (4) that was also log-like and would admit negative numbers.  
Later in 1989, Burbige (5) compared the IHS and BC transforms and came to the 
conclusion that the IHS had more merits.  The IHS transform has since been 
selected as a surrogate log transform for signed data in numerous publications 
from various scientific disciplines ranging from agriculture to astrophysics (6, 7).   
 
Many traditional statistical methodologies (e.g. regression, ANOVA) require that 
data be normally distributed and have constant variance.  As seen in Fig. 1B, the 
L transform does have a “stabilizing” influence on SD or variance with 
multiplicatively scaled data and thus has been extensively used to transform this 
type of data into a form amenable to statistical analyses with the constant 
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variance requirement.  In some cases, however, data will have negative, zero, 
and positive values which complicates the use of the log transform.   In these 
cases, other transformations such as the generalized logarithm (GLOG, 8), 
Started Logarithm (SL, 9-10) and the log-linear hybrid (LL, 11) have been shown 
to be log-like, preserving the variance with multiplicatively scaled data, that also 
can accept extreme positive and negative values.  In 2003 the performance of 
these three different transforms was evaluated by Rocke and Durbin (12) where 
they found that the GLOG transform was the best choice for gene-expression 
microarray data.  
 
In the field of Cytometry, this issue is important since compensation is a process 
that does involve subtraction or translocation (13), resulting in negative, zero, 
and positive value data.  Compensated data have multiplicative and translocated 
characteristics.  The multiplicative attribute is fundamental to measurement 
processes such as found in Cytometry.  DNA histograms are an excellent 
example, the SD of the G2M population is very close to twice G0G1.  The CV of 
a population is the ratio between its mean intensity and variability and therefore, 
for the most part, CV is preserved in measured data.  As was shown in Fig. 1B, 
this type of data is particularly amenable to the L transform since constant CV 
translates to constant SD’s or variances, making the populations clearly 
distinguishable. 
 
The other characteristic of compensated data is translocation.  In the 
compensation process, a population is moved or translocated via subtraction 
along one or more of its parameters to or near the origin of an axis without 
significantly changing its variance.  As shown in Fig. 1D, the L transform is 
particularly unsuited for this type of data.  An optimal transform for compensated 
data must be able to handle both of these characteristics.  
 
In 2002 Parks and Moore (14) proposed using a modified IHS transform as a 
replacement for the L transform for compensated data called the 
Logicle/Biexponential (LB) transform.  Since it is not necessary to protect the 
family of IHS transforms from negative or zero data, there is no inherent bias in 
the transformed data.  Thus, properly compensated data does not appear over-
compensated with the LB transform, which eliminates a major source of error in 
Cytometry data analysis.   Parks and Moore generalized the IHS transform to 
better meet the needs of displaying compensated data.  Parameters were added 
to the hyperbolic sine exponentials to better control the size of a linear window 
through the origin, which helped eliminate low intensity binning artifacts and 
controlled the variance of negative populations.   
 
In 2003 the HyperLog (HL) was released in software (15) and later presented 
(16) as a log-like transform optimized for compensated data.   The HL transform 
was engineered as a hybrid function.  One component of the function is ideally 
suited to the multiplicative nature of compensated data, and the other, to its 
translocated nature.  The transform smoothly transitions from one type of 
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transform to the other, depending on the analysis or graphics needs.  The HL 
transform is similar but not identical to (LL) and fundamentally different from the 
IHS types of transforms.   The HL transform is an inverse hybrid 
linear/exponential function that is defined over the real-numbered domain.  The 
HL transform is flexible enough to represent unbiased compensated data with 
visually pleasing axes (see Fig. 6A, 6B, 7).      
 
The purpose of this paper is to mathematically describe the HL transform, 
investigate its properties, especially in eliminating binning artifacts, and 
demonstrate its usefulness in representing axes for Cytometry data.  Although 
the HL transform was designed specifically for the unique characteristics of 
compensated data, it is flexible enough to be used in a more general manner. 
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Materials and Methods 
Simulations 
Simulations were performed by MathCad 2001 Professional (MathSoft 
Engineering & Education, Inc,  
 
The following examples have only been designed to demonstrate the problems 
associated with the logarithmic transform for translocated data.  These examples 
do not incorporate data measurement errors due to photon-counting or 
digitization. 
 
Example 1:  Multiplicatively Scaled Data (see Fig. 1A, B) 
Populations are normally distributed using the Box-Muller equation (17) from 
10,000 synthesized events.  The mean and standard deviation (SD) of the 
unscaled population, H, are 600 and 50 respectively.  The linear scale and L 
transformed scales range between 0 and 1000 (r=1000, d=3).  As described for 
the L transform, r is the ADC resolution and d is the number of decade dynamic 
range.  The low-intensity population (SL) is formed by assuming constant CV and 
scaling the mean and SD to 1% of their original values, 6 and 0.05 respectively.     
 
Example 2:  Translocated Data (see Fig. 1C, D) 
The same method as described for Example 1 was used to create the high-
intensity population, H.  The low-intensity population, TL, is formed by 
translocating H to 1% its original value, 6, while preserving the original SD, 50.  
 
Example 3:  Translocated Data (see Fig. 5) 
The same method was used as described for Example 2, except that the TL 
population was translocated to the origin.   
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Results 
 
The inverse of the basic HyperLog transform is given by, 
 

ea y⋅ b y⋅+ 1− y 0≥if

e a− y⋅
− b y⋅+ 1+ otherwise  

where a and b are constants and y is defined over the 

real-numbered domain. 

 
A more practical base-ten form of this transform is, 
 

EH y b,( ) 10

d

r
y⋅

b
d
r
⋅ y⋅+ 1− y 0≥if

10

d−

r
y⋅

− b
d
r
⋅ y⋅+ 1+ otherwise

 

The constant d, decades, and has a similar 

definition as described for the L transform; at 

y=r, EH(y,b) is at its maximum. 

 
The EH transform is continuous and symmetric about the origin as shown in Fig. 
2 and its zoomed inset.  Three different b coefficients, 0, 35, and 100, are shown 
to demonstrate how b affects the transform through the origin (see Fig. 2 inset).  
The H transform is also shown to illustrate how EH(y,b) approaches E(y) for 
y>>0.   Note that the number of decades for these transforms is three in order to 
correspond to the example data shown in Fig. 1.  With four or higher number of 
decades, the relative effect of the linear term in the EH transform in the high 
intensity region will be a lot smaller than that shown in Fig.’s 2 and 3.  
 
The HyperLog (HL) transform is the inverse of EH which is found by using a 
suitable root finding algorithm (18) and restricting the roots to non-imaginary 
values.     
 

HL x b,( ) root EH y b,( ) x−( ) 

where root(…) is a standard root finding 

algorithm (18) that finds y such that EH(y)=x.  
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Fig. 3 shows the HL transform with b coefficients 0, 35, and 100 as well as the 
corresponding L transform.  For extreme values of x, the HL and L transform 
have very similar characteristics.   
 
Binning Effects and Population Splitting 
 
Axes transformations can radically change the shape of histograms due to 
unequal bin sizes as was shown for the L transform in Figure 1D.   The reason 
unequal bin sizes cause distortion is depicted in Figure 4.  Panel 4A shows a 
histogram with four equal sized bins containing the same number of events in 
each bin.  When a transform is applied to the x bin boundaries, the sizes for each 
histogram bin can change as shown in Panel 4B.  Since the frequency in each 
bin must be preserved, the height of the histogram bins must change inversely as 
their widths change.  In the case of the L transform, this binning effect creates a 
peak in the middle of the axis with a decreasing continuum approaching the 
origin as shown in Figure 1D.   
 
The HL transform with b=0 also has binning effects near the origin, often splitting 
negative populations into two peaks (see Fig. 5 b=0 distribution).  This artificial 
population splitting is a graphical distortion that should be minimized in order to 
unambiguously appreciate separate clusters.   
 
By increasing the HL transform’s b-coefficient, this peak splitting can be 
eliminated as shown in Fig. 5 for b=35, 100, 277, and 333.   A simple approach to 
finding an appropriate b-coefficient would be to manually set it to a value large 
enough to eliminate peak splitting for a number of data sets.  For four decade 
Cytometry data, a single b-coefficient of 100 can be used on a wide variety of 
data sets with varying amounts of applied compensation (see Fig 6A, 6B). 
 
The critical b-coefficient, bc, that just eliminates peak-splitting for an arbitrary 
population at the origin is calculated as follows:  
 
Let F(i) return the number of events for the untransformed population's channel i.  
By using the chain rule for inverse functions and taking the derivative of the i>=0 
part of EH(I,b), the binning effect on F(i) is given by, 
 

G i( ) F i( )
d
r

10

d

r
HL i b,( )⋅

ln 10( )⋅ b+

⎛
⎜
⎝

⎞

⎠⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅
 

Eq. 1 

for i>=0  

 
If we assume that the SD of the negative population is sd; we can write a 
characteristic function, C, as 
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C

0

int sd( )

i

∆G i( )
2∑

=

∆G i( ) G i 1+( ) G i( )−  

Eq. 2 

 
By using a suitable minimization method on C varying b (19), we can find bc. A 
negative distribution will be very flat between zero and sd when HL transformed 
with b=bc.  If b is less than bc, the data will appear split.  If b>>bc it will appear as 
a single population.  For our example data, bc is calculated as 35.332.  See Fig. 
5, b=35 to appreciate the flat distribution that is associated with bc for Example 3 
data. 
 
A reasonable approach to finding an “appropriate” b-coefficient might be to 
maximize the Fisher distance function for a negative (mean2=0, sd2) and positive 
(mean1, sd1) population in HL transformed space.  The Fisher distance function 
is given by, 
 
FD mean1 mean2, sd1, sd2,( )

mean1 mean2−

sd12 sd22
+

:=

 

 
The distance is maximum when the means between the two populations are far 
apart and their respective variances are relatively small.  The HL transform 
characteristic function that when maximized (19) yields the “optimal” Fisher 
distance between negative and positive distributions is given by, 
 

HL mean1 b,( )

HL mean1 sd1+ b,( ) HL mean1 b,( )−( )2 HL sd2 b,( )2−

 
For Example 3 H and TL populations, the b-coefficient that maximizes the Fisher 
distance is 276.67 (see Fig. 5, b=277).   
 
The log transform normalizes extreme positive valued data and stabilizes the 
variance for multiplicatively scaled data.  An interesting question to ask is 
whether the HL transform with a suitable b-coefficient, bt, can stabilize the 
variance of translocated data to the origin (see Fig. 1C and D).  When the b-
coefficient is very high, the HL transform will be close to linear and would 
conserve the variance in a way that is similar to Fig. 1C.  Unfortunately, the 
transform would have very little log-like characteristics which would be 
undesirable. 
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One can, however, find a b-coefficient, bt, where the linear SD or variance of a 
positive population is approximately the same as the SD of the translocated HL 
transformed population.  For this equality to hold, then,   
 

10

d

r
sd⋅

b t
d
r
⋅ sd⋅+ 1− sd

 

 
Solving for bt,  
 

b t
r
d

1
sd

10

d

r
sd⋅ log sd( )−

− 1+

⎛
⎜
⎜
⎝

⎞

⎠
⋅

 
Eq. 3 

 
If the term d*sd/r << log(sd), which it normally is for typical values of d, r, and sd; 
the above equation simplifies to, 
 

b t
r
d  

Eq. 4 

 
Since bt is relatively independent of sd and the positive population mean, the 
above equation is quite general for most cases.  For the Example 3 data, bt is 
calculated as 333.33 (see Fig. 5, b=333).  Over the range sd=1..100, the sd of 
the population translocated to the origin varied by less than 1% from its original 
sd with bt=r/d for the Example 3 data.  
 
The ability of the HL transform to accept negative numbers usually requires that 
a lowest negative HL transformed value be determined.  This boundary is either 
set manually or calculated as the value that excludes some percentage (e.g. 5%) 
of negative events. 
 
Multi-parameter data generated from four different fluorescent proteins are 
traditionally difficult to compensate because of their relatively weak fluorescence 
and significant signal-crossover.  Therefore, this type of data is a good test case 
for comparing HL and L transforms (see Fig. 6).  As shown in Fig. 6 Panels A, B, 
and C; HyperLog axes can represent compensated data in an unbiased display 
format.  Compare the same data with traditional log axes (see Panels D, E, and 
F).  The encircled population in Panel D clearly shows compensation bias for the 
L transform, making the data appear to be under-compensated.  The 
corresponding population in Panel A does not show this bias.  Panel F uses an 
isometric display of Panel D data to better demonstrate the truncation and 
binning effects of the log transform, resulting in high number of events directly on 
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the axes.   The HL transformed data shown in Panel C does not show these 
undesirable effects.   
 
HyperLog axes also have a well-balanced appearance (see Figs 6A, 6B, 7).  Part 
of the reason is that the linear axis distance is approximately the same as the 
adjacent log axis distance (see Fig. 7 Linear and Log distance arrows).  Stating 
this relationship mathematically, 
 

R
HL 10 b⋅ b,( ) HL b b,( )−

HL b b,( ) 2⋅  

where R~1 for b=0..100. 

 
The right-most inset in Fig. 7 shows that R is approximately one for a wide range 
of b-coefficients, 0..100, giving the axis its well-balanced and aesthetically 
pleasing appearance.   
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Discussion 
 
The HyperLog (HL) transform is a log-like transform for display or analysis 
systems that need to span the real numbered domain.   The inverse of the HL 
transform, EH, is an exponential/linear hybrid function designed specifically for 
compensated data.  Each value that comprises the HL transform is calculated by 
a suitable root finding routine.  If the transform is to be used in software, these 
transformed values are normally entered into a lookup table with linear 
interpolation.  This requirement is not really a problem since transforms like log 
and exp are normally implemented with lookup tables anyway since 
transcendental functions are inherently computationally expensive. 
 
Log and Log-like transforms can create binning artifacts that can be confusing if 
not minimized or eliminated.  For example, the HL transform with b=0 can cause 
a population located at the origin to appear as two separate populations defined 
in the negative and positive numbered domains (see Fig. 5, b=0).   Negative 
population splitting is easily eliminated by increasing the b-coefficient to some 
positive value (see Fig 5, b>bc).   
 
The b-coefficient smoothly transitions the HL transform between two different 
types of transforms.  With a low b-coefficient, the transform is more log-like and 
thus stabilizes population variances that are multiplicative scaled (e.g. constant 
CV).  As the b-coefficient approaches bt, the transform becomes more optimal for 
stabilizing the variance for translocation or subtractive scaling.  The “appropriate” 
b-coefficient is ultimately determined by which of these two types of scaling is 
most important for the analysis or graphics at hand.    
 
For graphic representation of compensated data, the lower limit of this 
appropriate b-coefficient is bc, since negative population splitting is not a desired 
characteristic.   The upper limit should be close to bt since optimizing the 
transform for translocated data represents an extreme for compensated data and 
results in a significant reduction of the separation between negative and positive 
populations.  One possible approach to finding an optimal b-coefficient that 
hopefully would fall between the bc and bt extremes would be to maximize or 
minimize some characteristic function that has some desired functionality.   
 
One obvious characteristic function would be the Fisher distance between a 
negative and positive population.   It makes intuitive sense that a good transform 
would attempt to separate these two populations as best as possible.  At first this 
approach appears to be an ideal solution, but finding this optimal HL transform is 
relatively easy for the simple example as described in this paper, but becomes 
complicated with real data.  With real data there may be many positive 
populations with ill-defined boundaries and it may not be clear which one to use 
for the optimization.  It also may be that it is more important to the investigator to 
separate two positive populations than a positive and negative population.   
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Another possible approach would be to find the HL transform that minimizes the 
difference between all the observed population variances.  This approach also 
has problems for real data.  It again requires some kind of method for identifying 
these populations, which may be very difficult to do automatically.  For some, this 
approach might create an aesthetically pleasing graph; but for others it may 
distort the log nature of the transform and create strange looking axes.  Another 
approach might be to find the lowest b-coefficient that makes the negative 
population similar to a Gaussian (16).  This approach would appeal to those that 
wish to minimally perturb the log-like nature of the transform. 
 
Transforms defined over the entire real domain like HL neither create nor destroy 
information; they only rearrange information.  When used as a graphics 
transform, a family of HL transforms formed by different b-coefficients are 
essentially equivalent from the point-of-view of information content and the 
decision for finding the “best” b-coefficient is somewhat arbitrary and largely 
influenced by a user’s or designer’s sense of aesthetics.  
 
Complicating this issue is that any method that optimizes the HL transform or 
other similar log-like transforms based on data will ultimately cause the axis to 
change as the data changes.  This variability can create problems for 
investigators who wish to compare data.  Comparing data is so common in the 
scientific process, that the “changing axis” problem in many ways outweighs any 
benefits in optimizing the transform.   
 
Another aspect to this decision is the complexity of the transform axis.  If the axis 
appears strange in any way, it tends to distract the viewer from appreciating the 
information contained in the data, a well-known problem in graphic design.  If the 
b-coefficient is a power of ten, the HL transformed axis smoothly transitions from 
a complete linear scale to a log scale yielding an axis that is well-balanced and 
simple to interpret (see Fig. 6A, 6B,7).    
 
When HL is used in graphic displays, the “best” b-coefficient is normally the 
simplest.  For four decade log data, a value of 100 works for just about all cases.  
The axes are consistent from one data set to another and thus have the 
important advantage of being comparable.  The axes are interpretable by any 
scientist that is familiar with linear and logarithmic axes and don’t appear 
needlessly complicated.  Thus, even though the HL transform is amenable to 
optimization techniques, software engineers should be discouraged from forcing 
the user to use a data-dependent optimized result.  
 
Other types of transforms (e.g. GLOG and LB) can also be used to display 
compensated data in an unbiased manner.  The advantages and disadvantages 
of each of these transforms are relatively minor, especially for graphic displays.  
The ultimate success or failure of these approaches will largely be determined by 
the aesthetics of the axes they produce. 
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In summary, the HL transform is a log-like transform that was originally designed 
specifically for the display of compensated data.  Its ability to smoothly transition 
between exponential and linear scales gives it desirable features that may have 
general application beyond the visualization of unbiased compensated data.   
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Figure 7 
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Figure Legends 
 
Fig. 1: Effects of log transformation for multiplicatively scaled and 
translocated data.   
 
Panels A and B show low (SL) and high (H) intensity populations (see M&M, 
Example 1 for details) for linear and L transformed scales.  Each of these 
populations was synthesized to have the same coefficient of variation (CV).  In 
the linear domain (Panel A), SL is not readily apparent as a separate population 
since it is compressed into a few channels.  The L transformed scale (Panel B) 
reduces mean and variance differences making the populations clearly 
discernable.   
 
Panels C and D also show low (TL) and high (H) intensity populations (see M&M, 
Example 2 for details).  The TL population was translocated to 1% of the H mean 
value without changing its standard deviation (SD).  When the TL population is 
presented on a log scale, the population is highly distorted and distributed over 
much of the axis, demonstrating the unsuitability of log transforms for 
translocated data. 
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Fig 2: Inverse HyperLog (EH) transform 
 
A family of EH transforms is displayed with the exponential (E) transform.  The 
EH transform (r=1000, d=3) is symmetric about the origin and predominately 
linear through the origin.  The EH transform approaches the E transform (blue, 
dash dot) with the identical resolution (r) and decades (d) values for y>>0.  The 
inset shows a zoomed region of the EH transforms demonstrating how they 
change with various values of the b-coefficient, b=0 (black, solid), b=35 (red, 
dash), and b=100( green, dot).   
 
Fig 3: HyperLog (HL) transform 
 
The HL transform is symmetric about the origin and predominately linear through 
the origin.  The HL transform approaches the L transform (blue, dash-dot) for 
x>>0.  The inset shows a zoomed region of the HL transforms demonstrating 
how they change with various values of the b-coefficient, b=0 (black, solid), b=35 
(red, dash), and b=100 (green, dot). 
 
Fig 4: Transformation and binning effects. 
 
Panel A shows a histogram with four equal sized bins containing the same 
number of events in each bin.  When a transform is applied to the x bin 
boundaries, the sizes for each histogram bin can change as shown in Panel B.  
Since the frequency in each bin must be preserved, the height of the histogram 
bins must change inversely as their widths change. 
 
Fig 5: HyperLog transforms and translocated Data 
 
The H and TL populations (see Example 3 for details) are HL transformed with 
various b-coefficients (0 (black solid), 35 (red dash), 100 (green dot), 277 (blue 
dash-dot), and 333 (lavendar dash dot dot).  As the b-coefficient is increased the 
negative population splitting is eliminated and the variance becomes smaller 
signified by the upward arrow above the TL population.  With increasing b-
coefficients the H population is moved to the left, reducing the separation 
between the H and TL populations. 
 
Fig 6: HyperLog and Log transforms with compensated cytometry data. 
 
The first two Panels, A and B, show three correlated fluorescent protein 
distributions with HyperLog (HL) axes demonstrating the ability of the HL 
transform to represent compensated data in an unbiased display format.  All the 
axes presented in Panels A, B, and C have b-coefficients set to 100.  Panel C 
shows an isometric display of Panel A demonstrating that the clusters are well 
delineated and not distributed along the axes. 
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Panels D, E, and F show the same data with traditional log axes.  The encircled 
population in Panel D shows compensation display bias; whereas, Panel A’s 
corresponding population does not.   The log transformation truncation and 
binning effects, resulting in large number of events on the axes, are 
demonstrated in Panel F.  Panel G presents all the color-coded combinations of 
the four correlated fluorescent protein expressions in the FCS file.  
 
The data are kindly provided by Teresa and Robert Hawley, George Washington 
University Medical Center. 
 
Fig 7: HyperLog axis aesthetics. 
 
HyperLog axes have a ratio between the linear and the adjacent log regions of 
approximately one (see right-most graph inset) giving the axis a well-balanced 
and aesthetically pleasing appearance.  The right-most inset shows that the ratio 
is approximately one for a wide range of b-coefficients, 0..100. 
 


