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Background: Flow Cytometry is the standard for the detection of glycosylphosphatidylinositol (GPI)-
deficient clones in paroxysmal nocturnal hemoglobinuria (PNH) and related disorders. Although the Inter-
national Clinical Cytometry Society (ICCS) and the International PNH Interest Group (IPIG) have published
guidelines for PNH assays, data analysis has not been standardized. Current analyses use manual gating
to enumerate PNH cells. We evaluate an automated approach to identify GPI-deficient leukocytes using a
GemStoneTM (Verity Software House) probability state model (PSM).

Methods: Five hundred and thirty patient samples were assayed on BD Canto II flow cytometers using
a stain-lyse-wash technique. Populations were defined using CD15, CD45, CD64 and side scatter. GPI-
deficient myeloid cells were recognized as FLAER-, CD24-, and dim or absent CD16. GPI-deficient mono-
cytic cells were identified as FLAER- and CD14-. The data were not censored in any way. A PSM was
designed to enumerate monocytic and myeloid cells by adjusting the peaks and line spreads of the data,
and recording the normal and GPI-deficient counts. No operator adjustments were made to the automated
analysis.

Results: By human analysis, 53 of 530 samples showed GPI-deficient clones. Automated analysis iden-
tified the same 53 clones; there were 0 false positives and 0 false negatives. Sensitivity was 100% and
specificity 100%. Gating and automated results (percent GPI-deficient cells) were highly correlated: r2

5 0.997 for monocytic cells, and r2 5 0.999 for myeloids. Mean absolute differences were 0.94% for
monocytes and 0.78% for myeloid cells.

Conclusions: Automated analysis of GPI-deficient leukocytes produces results that agree strongly with
gate-based results. The probability-based approach provides higher speed, objectivity, and reproducibil-
ity. VC 2012 International Clinical Cytometry Society
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The problems associated with analysis of flow
cytometry listmode files by gating on plots of univari-
ate or bivariate data are well-documented (1–4). Gat-
ing approaches are subjective, difficult to reproduce,
and challenging to automate. Attempts have been
made to solve these shortcomings using multivariate
classification techniques, including clustering algo-
rithms, support vector machines, and other
approaches. All of these efforts have been driven
by the idea that automated analysis could improve the
objectivity, standardization, and speed of flow cytome-
try data analysis.

Additional Supporting Information may be found in the online ver-
sion of this article.
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One flow cytometry application that would benefit from
automation is the detection of glycosylphosphatidylinositol
(GPI)-deficient clones in paroxysmal nocturnal hemoglobin-
uria (PNH) and other bone marrow failure disorders.
Although the International Clinical Cytometry Society
(ICCS) and the International PNH Interest Group (IPIG)
have published guidelines (5,6) for the performance of PNH
assays, data analysis has not been standardized. Current
analysis requires trained analysts using subjective gating to
enumerate normal and GPI-deficient cells (7). Guidelines
require the analysis of two cell lines, red cells and leuko-
cytes, to confirm a diagnosis of PNH. In this study, we pro-
pose an automated multivariate classification approach for
GPI-deficient leukocyte analysis, based on GemStoneTM (Ver-
ity Software House). We compare the results of automated
analysis with a traditional gating analysis of GPI-deficient leu-
kocytes performed by a trained expert.

METHODS

Five hundred and twenty-seven peripheral blood sam-
ples and three bone marrow samples submitted for PNH
analysis were assayed in a clinical laboratory using four
Becton-Dickinson Canto II flow cytometers. While the
laboratory performs the recommended PNH screening
of both red cells and leukocytes, this study focuses on
the analysis of leukocytes for GPI-deficiency.

Machine-to-machine consistency was verified using a
patient sample with a large clone size. The within-run,
machine-to-machine coefficients of variation were 0.25%
for myeloid cells and 0.28% for monocytes. The white
blood cells were prepared using a stain-lyse-wash tech-
nique with the markers FLAER-AF488TM (Pinewood/
Cedarlane, Ontario, Canada), CD24-PE (Beckman
Coulter, Miami, FL), CD16-PerCP-Cy5.5 (Becton-Dickin-
son, San Jose, CA), CD14-PE-Cy7 (Pharmingen, San
Diego, CA), CD64-AF647 (BioLegend, San Diego, CA),
CD45-APC-H7 (Becton-Dickinson), and CD15-PacBlue
(IgG1) (Becton-Dickinson). Typically, 90,000 ungated
events were acquired. Monocytic and myeloid cells were
defined using CD15, CD45, CD64 and linear side scatter.
GPI-deficient myeloid cells were recognized as FLAER-,
CD24-, and dim or absent CD16. GPI-deficient mono-
cytic cells were identified as FLAER- and not CD14þ.
Forward scatter was not utilized in the analysis. At least
10 GPI-deficient cells in each lineage were required to
report an abnormality.

The data were not censored for data quality, the pres-
ence of a hematologic malignancy, or other factors. Sam-
ples were 1–5 days old; the data set was not selected for
age-of-sample. All patient identifiers were removed from
listmode files before analysis. This study was considered
exempt under 45 CFR 46.101(b)(4) as defined by the

FIG. 1. Traditional gating method for GPI-deficient leukocyte analysis. Regions defining the monocytes and myeloid cells are drawn on a plot of
CD45 by linear side scatter (A). Cells in these two lineages are further refined using a plot of CD15 by CD64 (B). The GPI markers are gated using
the lineage regions and displayed in plots (C) and (D), and regions on these plots quantify the number of GPI-deficient leukocytes.

320 MILLER ET AL.

Cytometry Part B: Clinical Cytometry



Office of Human Research Protections (OHRP), U.S.
Department of Health and Human Services (HHS). Win-
ListTM (Verity Software House) was used for the tradi-
tional gating method by a trained expert. The gating
results were considered to be the predicate method.
The gating method used is shown in Figure 1.

A Probability State Model (PSM) was designed using
GemStone to enumerate normal and GPI-deficient mono-
cytic and myeloid leukocytes. Four cell types are defined
in the model: Normal myeloids, normal monocytes, GPI-
deficient myeloids, and GPI-deficient monocytes. Each
cell type defines a set of marker expression characteris-
tics for one subset of cells. As with the gating approach,
the model uses CD15, CD45, CD64 and linear side scat-
ter to identify monocytes and granulocytes. The model
uses FLAER and CD24 to separate normal and GPI-defi-
cient granulocytes. FLAER and CD14 are used in the
model to distinguish normal and GPI-deficient mono-
cytes. When the model is applied to a listmode data file,
each event (cell) is assigned to one cell type by means
of the PSM’s competitive probability algorithm (8,9), Fig-
ure 2. The automated analysis performed on each data
file adjusted the PSM to the peaks and line spreads of
the data, and recorded the normal and GPI-deficient
counts for monocytic and myeloid cells. No operator
adjustments were made to the PSM automated analysis,
and computers of modest performance (dual-core proc-
essor) were used. The PSM automated analysis process
is illustrated in a video, available online as Supporting
Information.

To assess the sensitivity of the PSM, gating and PSM
results were compared with predicted values in a serial
dilution experiment. A patient sample with a white cell
count of 4,200/ll and a clone size of 93% of the myeloid
cells was diluted 1:100 with a normal sample with a
white cell count of 8,400/ll and a clone size of 0%.

This dilution then underwent serial twofold dilutions to
a level of 1:3,200. The samples for the two greatest dilu-
tions (1:1,600 and 1:3,200) were acquired at 200,000
events instead of 90,000. Only myeloid cells were con-
sidered. The smallest predicted clone size is 0.014%.

RESULTS

Typical PSM output for a GPI deficient clone is shown
in Figure 3. By human analysis, 53 of 530 samples were
reported using the traditional gating method as showing
the presence of a GPI-deficient clone. The clone sizes
ranged from 0.10 to 99.92% for the myeloid cells. Auto-
mated analysis by PSM identified the same 53 samples as
having a GPI-deficient clone. There were 0 false posi-
tives and 0 false negatives; the sensitivity of the PSM
analysis is 100% and the specificity is also 100%.

Gating and PSM percentages of GPI-deficient cells
were highly correlated: r2 ¼ 0.997 for monocytic cells,
and r

2 ¼ 0.999 for myeloids, Figure 4. Linear regression
analysis also showed favorable results: monocytes y ¼
0.9841x þ 0.4778, and myeloid cells y ¼ 1.0112x –
0.1866. The mean absolute differences were 0.94%
points for monocytes and 0.78% points for myeloid cells.
The maximum absolute difference was 5.2% points. PSM
results produced by two operators were identical (r2 ¼
1.00, data not shown).

Another measure of the performance of the PSM
model was obtained by comparing the PSM clone size
result to the predicted value in a serial dilution experi-
ment (Fig. 5). As a point of reference, traditional gating
of the serial dilution data produced results that were
highly correlated with the expected concentrations (r2

¼ 0.9944), slightly underestimating the predicted values
(y ¼ 0.935x þ 0.004). The PSM results were also highly
correlated with expected values (r2 ¼ 0.9914), with

FIG. 2. Probability state modeling process for GPI-deficient leukocytes. For each event, the Probability State Model (PSM) determines the probabil-
ity that the event belongs to each of the four cell types: Normal Myeloid, GPI-deficient Myeloid, Normal Monocyte, and GPI-deficient Monocyte. The
probabilities are used to assign events to cell types. In the figure, listmode events in the leftmost column (A) are unclassified. The PSM starts by
evaluating the likelihood that the event is a normal myeloid event (B) based on CD15, CD45, CD64, SSC, Flaer, and CD24. It proceeds to evaluate
probabilities for remaining cell type based on marker expression levels (C, D, E). Finally, events are stochastically assigned to one cell type (F) based
on probabilities of the prior steps. Events with low probabilities for all defined cell types are left unclassified.
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results slightly overestimating the predicted values (y ¼
1.1022x þ 0.093).

Taking the dataset as a whole, four of the samples
showed sizeable clones of myeloid blasts. PSM correctly
demonstrated that the blasts had weak expression of
FLAER and were negative for the GPI anchored markers
tested (data not shown). Both PSM and gating methods
appropriately displayed the immature cells in the three
bone marrow samples (data also not shown).

DISCUSSION

Standardized criteria for the evaluation of the perform-
ance of automated, multivariate classification programs
in the analysis of flow cytometry listmode data are not
available. Comparison with a predicate, manual method
as such was done in this study would seem to be a mini-
mum requirement. By this criterion, the PSM method
performed accurately against the gating method in this
mixture problem setting.

The assessment of performance with less-than-perfect
data is a multifaceted problem that must be dealt with
by any multivariate classification system. In this study

we have only considered the issue of cellular viability
and integrity. The PSM model performed well in its abil-
ity to handle data that showed extensive loss of viability
and integrity. In fact, one of the great strengths of the
PSM model is its ability to adjust to intensity shifts in
the data. There are, however, other reasons for spuri-
ously variable data. Unintended changes in reagent or
cytometer performance can have a profound effect on
measurement values. The ability of the PSM model to
detect large, artifactual shifts has not been explored.

Human analyst-to-analyst or even analyst-to-self preci-
sion in the manual analysis of flow cytometry listmode
data is never perfect (personal observation). Thus man-
ual analysis can never be completely objective nor can
the analysis be entirely standardized. By contrast, the
automated results were invariant regardless of the opera-
tor using the PSM model. The goals of precision, objec-
tivity, and standardization were achieved with the
automated PSM approach.

The PSM analysis is intrinsically faster than the manual
analysis: 35 seconds compared with 300 seconds per
data file on average. This improved analysis time is in

FIG. 3. Typical PSM Output (Myeloid Cells with a Large Clone). The results of the PSM modeling approach can be viewed with conventional dot
plots. The myeloid and monocytic lineage determinations made by the model are shown in the CD45 vs SSC-A plot (A). The classification of normal
(blue) and GPI-deficient (orange) myeloids is shown in the FLAER vs CD24 plot (B). It is important to note that no gating is used in these determina-
tions; the PSM uses probability-based decisions to assign events to each subset. Typical statistics are also output from the model (C).

FIG. 4. Comparison of Gating and PSM Results for GPI Deficient Clones. Clone size percentage is compared between traditional gating by an expert
and automated PSM methods for 53 GPI-deficient cases. Results are highly correlated for both monocyte (A) (r2 ¼ 0.9968) and myeloid (B) (r2 ¼
0.9990) subsets.
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part due to the automated production and routing of
reporting figures and data. The operator’s time was only
required to select files for batch analysis by GemStone
and to trigger the process. No operator time or interven-
tion was required during the automated analysis.

The PSM analysis offered additional insights into the
panel of markers that were used for the detection of
GPI-deficient granulocytes. For the samples in this study,
the laboratory used three markers to identify GPI-defi-
cient granulocytes: FLAER, CD16, and CD24. The origi-
nal PSM in our study included components to model all
three of these markers, and that model achieved reason-
able correlations with the expert results (data not
shown). Since modeling reveals the relative contribution
of each marker in the panel, we created additional PSMs
to explore whether we could achieve similar results
with fewer markers. Surprisingly, we found that we
achieved better correlations with the expert results by
using two markers: FLAER and CD16, or FLAER and
CD24. The use of CD16 and CD24 without FLAER pro-
duced lower correlations (data not shown). The model
used in our final analysis made use of FLAER and CD24,
which produced the highest correlations with the
expert analysis. These data provide support for the pub-
lished ICCS recommendations for using two reagents to
identify GPI-deficient granulocytes. On the basis of these
findings, the laboratory subsequently removed CD16
from PNH-screening panel. This allowed for the addition
of 7AAD into the tube and the elimination of a separate
viability tube in the panel. This change enables a consid-
erable savings in both time and money, and only became
apparent as a result of using modeling.

In this study, the use of linear Side Scatter follows the
recommendations in current guidelines and practice
(5,6). For myeloids (granulocytes), the linear side scatter
distribution is very broad and presents challenges for

automated peak-finding routines in GemStone. The
model used in this study makes limited use of side scat-
ter in the myeloid cell types for this reason. The use of
a logarithmic transformation for side scatter may be a
better choice when modeling is used, presenting a more
compact myeloid distribution with a distinct peak. This
should be the subject of further study.

CONCLUSIONS

GemStone is a commercially available computer pro-
gram that uses PSMs for the analysis of cytometry list-
mode data. PSMs have been used in other unpublished
studies to understand cell lineage maturation sequences
and for discovery. In this study, we find GS is equally
well suited to handle mixture problems. Automated anal-
ysis of GPI-deficient leukocytes by the PSM model pro-
duces results that correlate strongly with expert analyst.
The probability-based approach provides higher objectiv-
ity, speed, and reproducibility than the gating analysis.
Automation capabilities of the PSM model required no
case-by-case operator decisions. PSM decisions are made
by the software and are based on probability distribu-
tions in the data and defined in the model. The PSM
model showed a robust capability to accommodate data
variability due to compromised cellular integrity and via-
bility. Although GemStone has not been approved for
clinical use at the time of publication, it is the intention
of the manufacturer to seek approval for routine use of
this application in the clinical laboratory.
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