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Abstract
Cytometry-based cell cycle analyses rely on identification of data clusters identified by the 
level of expression of biochemicals and the frequency at which cells with specific levels occur 
within cell populations.  The simplest case is DNA content analysis of euploid cells (G1 = 2C 
DNA, G2 and M = 4C DNA, and S = every level in between).  This case can be extended in an 
informative manner to include cell cycle markers that oscillate within one cell cycle.  If the 
markers are chosen appropriately, the cell cycle becomes a closed loop through n-dimensional 
data space.  The cell cycle programmed expression profile for each marker or ancillary 
markers can be extracted using the cell frequency as a surrogate for time.  This is referred to 
as transition state-related cluster analysis (TSCA).  

A Probability State Model can be used to re-order data from a cytometric assay according to 
the expected progression through a biological process.  This re-ordering can follow the time 
component of a process but is not bound by it – e.g., the model can run backwards or forward 
through the process, even though the process can only move forward through time.  In 
probability state modeling as practiced here, the length of each ordered data segment is 
proportional to the probability of finding the cells at a specific level of the biological marker.  
Thus, expression profiles and probability models are conceptually equivalent.  

Here we compare transition state analysis to probability state modeling for the cell cycle by 
comparing expression profiles for DNA content, cyclin A2, cyclin B1, and phoshpo-S10-histone 
H3 to probability state models for the same markers.  Two approaches are compared.  In the 
first approach, the probability state model is defined based on verbal or cartoon descriptions of 
expression profiles.  In the second approach the expression profiles from the transition state 
analysis are used to create the probability state model.  
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In this analysis, the Probability State Model (PSM) was 
based on the expected expression of the various markers 
through the course of the cell cycle.  

The expected expression was that cyclin A2 and cyclin B1 
increased at varying rates as a function of cell cycle 
progression before reaching their maximum values at the 
onset of mitosis.  PHH3 increased slightly until the onset of 
mitosis and then increased dramatically to its maximum 
value.  The expression of cyclin A2 decreased before cyclin 
B1, and cyclin B1 decreased before the end of the cell cycle.  

The model created by this method is shown in Figure 5.  
The pre-mitotic (Figure 5A) and the mitotic (Figure 5B) 
events are modeled as two progressions in order to have 
more detail in the mitotic range.  

The PSM’s reduced chi-squared (RCS) value quantifies how 
well a model is fitting the data.  For the data shown in Figure 
5, the RCS values for the two progressions were 2.0 and 1.8 
respectively, where 1.0 is the average RCS value for data 
appropriately modeled.  

The PSM shown below fits all three of the replicates in this 
experiment quite well.  When the PSM was optimized for 
each replicate the quality of the fit, based on the RCS, was 
equivalent to the data shown below.  

In this approach, regions are set contiguously along the 
back-bone of the four-dimensional data trajectory, using 
bivariate view. For this specific approach, 3 views are 
required (Fig. 2 B-D).  However, we used an additional view 
(Fig. 2A) to take full advantage of the high level expression 
of cyclin B1 in G2 phase.  

In the second analysis, the PSM was based more directly on 
the expression of the markers determined by the TSCA (see 
section 2).  The model created by this method is 
summarized in Figure  7.  The profile shapes in these 
overlay graphics are accurate representations of the profiles 
in section 2.  One difference in the profile shape is that the 
profiles below are shown using a log-like transformation and 
Figure 3 shows the linear curves.  As shown, the model 
created in this manner is very similar in expression to the 
model created in section 2.  For the data shown below the 
RCS value for the two cell types were 15.73 and 5.11.  

In this analysis we expected that, if the parameter 
expression shapes generated by the TSCA are correct, the 
PSM based on those shapes would distribute the events 
uniformly through the progression.  Figure 8 shows the 
frequency distributions for the two progressions.  We can 
see that the frequency distributions are perturbed, indicating 
that the model created in this manner is not perfectly fitting 
the data. 

One reason that this PSM may not describe the data as well 
as the PSM in section 3 could be due to slight differences in 
the pre-processing gates used here and in TSCA.  Further, 
we are modeling only 20 out of the 39 points along each 
curve found in section 2.  Lastly, and likely most importantly, 
the PSM is accounting for measurement variability where 
TSCA is not.  

The purpose of cell cycle analysis is to (1) determine the 
fractions of cells in specific compartments (e.g., phases, 
checkpoints, mitotic stages), (2) determine the level of 
expression of a biomarker in specific compartments, and/or 
(3) determine the continuous, programmed  expression of 
bio-markers as a function of the cell cycle. Here, our 
objective is to obtain the third by two different approaches. 
Cytometry measurements on asynchronous populations are 
unique in that they capture cells at all states within the 
lifetime (cell cycle) of an average (modal) cell.  Because of 
this, we can achieve goal three from single samples.  This is 
dependent on the presence of a set of measurements that 
allow us to follow the cell cycle through n-dimensional space 
in an unambiguous manner.  Figure 1 shows this concept.  

One preliminary approach to quantitatively compare the two 
PSM analyses with region-based extraction of profiles is to 
plot the cumulative percent of events found at each stage of 
the cell cycle, one method vs. the other.  Figure 9 shows 
that all three methods are correlated.  Interestingly, if we take 
the region extraction method as the truth, the PSM 2 effort 
faired less well than the original effort, working from a verbal 
description (the cartoon version).  

We found that analysis by PSM resulted in expression 
profiles similar to TSCA.  Cyclin A2 rises faster in S 
compared to cyclin B1; cyclin A2 degrades before cyclin B1; 
PHH3 rises abruptly at the onset of mitosis.  Further, we 
found that analysis by both PSMs resulted in classification of 
the cell cycle that was approximately the same as TSCA 
(Figure 9).  This suggests that the PSM 1 approach is 
sufficient to provide a good compartment or transition state 
analysis of the cell cycle based on these measurements.  At 
least in this study, there doesn’t seem to be much gained by 
using the locally detailed information from the region-based 
method when constructing the PSM.  

We have not quantitatively compared the expression profiles 
from the TSCA and PSM analyses.  However, it is clear from 
Figures 3, 5, and 7 that the two approaches differ, 
particularly for cyclin A2.  E.g. at frequency 0.8, in Figure 3, 
cyclin A2 is increasing significantly while at state 80, in 
Figures 5A & 7A, cyclin A2 has become asymptotic. The 
profile shapes for cyclin B1 and PHH3 seem more 
concordant among the three methods.  

There are some advantages of the PSM approach.  A PSM 
accounts for overlaps between the stages of the cell cycle. 
Directly describing the profile shapes is simpler than using 
the numerous gates need for the TSCA.  The PSM allows 
the modeler to easily account for measurement variability.  
Further, the PSM gives feedback as to how well the model is 
fitting the data via the RCS value.  For a more detailed 
description of PSM see poster P96, program number 182.  

Introduction

Figure 1:  
OpenGL rendering, from WinList, of 
the four parameter data, with 
manually placed arrows showing 
continuous progression of the four 
measurements within the data space.  
Three parameters were used to 
position the events in space.  The 
fourth, PHH3, was color coded, 
progressing from blue (lowest values) 
to red (highest values). Cyclin A2

Cyclin B1

DNA

Figure 2:
39 Regions were set to 
obtain measurements of the 
median values for cyclin 
B1, cyclin A2, and PHH3 
and the number of resident 
cells in each region.  The 
regions are numbered 
consecutively from 11-50 
as we move through the 
cell cycle  A: Interphase; B: 
entire cell cycle; C: mitosis; 
D: cells gated from region 
48 (region 48 was not used 
to calculate PHH3 values.

Figure 3:
Top left: Entire cell cycle demarcated 
by dotted lines at G1-S, S-G2, and G2- 
M borders as determined by modeling 
DNA content using ModFit LT (VSH).
Top right: Last 10% of the cell cycle.  
Note, the ordered degradation of A2, 
B1 and loss of PHH3.
Bottom right: Last 1% of cell cycle.

Figure 4: Dot-plots with manually placed arrows approximating the 
expression curves shown in Figure 3.  

Figure 6: Dot-plots showing the model’s progression in two-dimensional 
projections of the four-dimensional data.  The color of the dots and 
the location of the progression arrows are automatically 
determined by the model.  

Figure 5:
A) Expression profiles from the 
beginning of the cell cycle to mitosis. 

B) Expression profiles from mitosis 
to the end of the cell cycle. 

C) Expanded area of the very end of 
the cell cycle. 

Figure 7:
A) Expression profiles from the 
beginning of the cell cycle to mitosis. 

B) Expression profiles from mitosis 
to the end of the cell cycle. 

C) Expanded area of the very end of 
the cell cycle. 

Figure 8: Slightly perturbed frequency distributions for the two progressions.  
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Figure 9:
Comparison of cumulative percent of cell cycle progression found 
by the three analyses.  The dashed diagonal line represents a 
perfect correlation.  
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Materials & Methods
We stained three samples of exponentially growing Molt4 
cells for DNA content, cyclin A2, cyclin B1, and phospho- 
S10-histone H3 (PHH3) using DAPI and conjugated 
antibodies (phycoerythrin, Alexa Fluor 647, and Alexa Fluor 
488, respectively).  Data were acquired on a BD Biosciences 
LSR II with standard filter set up.  Data were preprocessed in 
all cases (compensation, aggregate removal, background 
subtraction) with WinList (Verity Software House, VSH).  
Expression profile extraction and plotting was performed with 
a combination WinList, Excel (Microsoft), and Prism 
(Graphpad, Inc.)  Probability state modeling was performed 
with GemStone (VSH).  The cyclin A2 antibody was a gift 
from Vince Shankey (Beckman Coulter); the cyclin B1 
antibody was GNS1 (BD Biosciences), which was 
conjugated with a kit from Molecular Probes; the PHH3 
antibody was from Cell Signaling Technology, Inc.  
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The average %CV for expression measurements at each 
point along the profile was less than 3% except for late 
measurements of cyclin A2 (most subject to compensation 
induced error). The average %CV for frequency was less 
than 1%. (N=3)

Figure 3 shows the normalized expression for the sample 
shown above.  Each circle represents a region, except the 
t=0 and 1, which are duplications of first and last measured 
values.  An exception is PHH3, in which the 0 value is ½ the 
last measured value (to account for cell division).  The 
expression of cyclins A2 and B1 at t=0 and 1 were set to 0.

Conclusion
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