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The literature is rich with articles describing mathematical models that can represent kinetic
processes. Many times, however, there are systems were it is difficult to directly measure
time or relative time. This lecture shows that even without the benefit of time as a
measurement, complex kinetic progressions can be successfully modeled. The
applications of this technology were originally intended to study cellular progressions in
cytometry, but the theory is sufficiently general to handle any type of system where one can
make correlated measurements on numerous objects, but just can’t directly measure time.
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« The secret to understanding complex
systems is to first understand the
simplest system and then add a little
complexity one step at a time.

e

Cells are wonderfully complex chemical machines and modeling them to reveal their hidden
secrets can indeed be a challenging prospect. The secret to understanding and modeling
complex systems like cells is to first understand the simplest possible system and then add
a little complexity one step at a time.

One way of searching for a good simple starting point is to go back in time and examine
some of the simpler systems. Let’s go back to the early and middle 1970’s where
cytometry was still in its infancy. Most of the interest in cytometry at that time was with
DNA histogram analysis. This would quickly change in the 1980’s when AIDS was
discovered but at this time, it was thought DNA content analysis would play a pivotal role in
understanding and treating malignancies.
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What is a DNA histogram?

b | 1 '3

= :

S4cl----- T ““%

S I 1 G2M 7

8 26 LT .

< G1 1 S |

£ I I

0 L L Mack Fulwyler, mid 70’s
0 Cell Age 1  Ideal DNA Histogram

5 5| ©1

2 R

S £ s

> ! > G2M
0 Cell Age 1 DNA Content

The first time | saw the story of “what is a DNA histogram” was in the mid-1970’s when
Mack Fulwyler, the inventor of cell sorters, was giving a black-board talk on DNA histogram
analysis. From what we can gather, he was describing what he had been taught by Marv
Van Dilla or Phil Dean at Los Alamos. He began by drawing two axis (1) which he labeled
as Cell Age and DNA Content (2). Cell Age was a relative time scale that ranged from 0
(right after division) to 1 (just before division). Cells begin the cycle with 2C (complements)
of DNA and when the DNA synthetic machinery turns on, their nuclear DNA increases until
the genome is duplicated at 4C (top graph). Thus, the cycle naturally divides into G1, S,
and G2M phases along the Cell Age axis.

Mack then drew two more axes below the first graph. The x-axis was the same, Cell Age,
but the y-axis was labeled as Number (Number of Events). He indicated that the density of
events or cells immediately after cell division, Cell Age=0, for asynchronous population of
dividing cells was 2X and just before the cells divide, was X. For an exponentially growing
population the theoretical relationship was a decreasing exponential starting at 2X and
ending at X where X was dependent on the area under the curve.

He then drew two more axes with DNA Content on the x-axis and Number on the y-axis
and labeled the graph as an Ideal DNA Histogram. He showed that the area under the G1
part of the curve is represented as a spike with its height equal to the area and likewise, the
G2M part of the curve was also a spike with the same height as its respective area. He
reasoned that as Cell Age moved from left to right, the DNA content would increase in the
DNA Histogram plot and the number of events would decrease as a truncated exponential.

Bagwell
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What Mack really did was show that the Ideal DNA Histogram could be derived from two
functions that were related to Cell Age.

Bagwell
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What is a “Real” DNA histogram and
how do we analyze it?
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He then indicated that because there is always uncertainty in measuring things with the
cytometer, each point in the Ideal DNA Histogram was really represented as a normal
(Gaussian) distribution. The summation of these normal distributions along with statistical
noise form the Real DNA Histogram, which looks just like the DNA histogram we measure
with our cytometers. But how do we analyze this data? Phil Dean and Jim Jett were the
first to tackle this problem using a modeling technique. They decided to use normal
distributions for G1 and G2M along with a broadened polynomial to fit the observed DNA
histogram (bottom graph). How did they find the optimal values for their model?
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The Modeling Process
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The modeling process involves mathematically quantifying the overall degree of difference
between the model and the observed data points. Typically, this is done by summing the
weighted squared differences known as chi-square. For a single parameter in the model,
this can be visualized as a special response function that has some set of valleys, where
one is deeper than all the others. This valley is called the true minimum. Modeling begins
with an estimate that is close enough to the True Minimum that it can follow the gradient
through an iterative process to the optimum value. This method is easily extended to many

model parameters. It's important to distinguish between a model parameters and a
cytometric measurement often called a parameter.

The Dean and Jett broadened polynomial required the optimization of 9 model parameters.
It began a vigorous search for the optimal model for DNA histogram analysis.
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Dean and Jett 1974
Jerold Fried 1976
Bruce Bagwell 1979/81
Michael Fox 1980
James Watson 1987
Peter Rabinovitch 1991
Bruce Bagwell 1991
Peter Rabinovitch 1991
Bruce Bagwell 1993
MultiCycle

Evolution of DNA Histogram Models

Broadened Polynomial S-Phase
Multiple Gaussian S-Phase

Multiple Rectangle/Trapezoidal S-Phase
Model for synchronized populations
Shape-free S-phase
Histogram-dependent dehris

Single and Multi-cut debris
Histogram-dependent aggregates

Aggregate probability distribution

ModFIT

Quite a few DNA models have been proposed over the years and some of them are shown
above. Sometime in the middle 1990’s the estimation and modeling algorithms reached a
level of sophistication where the modeling process became largely automatic no matter
what the complexity of the DNA sample. The program MutliCycle evolved from principally

Peter Rabinovitches work and ModFit resulted from mine.
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Modeling Vs. Gating
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The left panel shows a typical cell cycle analysis with one of the testing data sets and the
right panel shows conventional gating analysis of the same data. Cell cycle analyses are
now completely automatic and therefore the results from the program are reproducible.
Any operator given the same data should receive the same exact results.
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Accuracy of Modeling Vs. Gating
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The poor reproducibility and accuracy of gating methods is one of the
reasons that modeling methods were highly suggested for DNA.
(Cytometry, Guidelines for Implementation of Clinical DNA Cytometry, 14, 1993)

The RC Error’s, a method that quantifies error based on chi-square statistics, from simple
gating are found to be much greater than a modeling approach. The triangles represent
data from the same operator which demonstrates that gating is neither accurate nor
reproducible. Because of data like this, in 1993 it was highly suggested that DNA cell cycle
phases be obtained from modeling techniques.

Bagwell
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Evolution of Modeling to More
Than One Dimension

» Virtually no progress was made to extend modeling
to more than one dimension for 40 years. A number
of us tried numerous times but the complexity of the
problem was too great. Also, it was not clear how to
take apart immunolgically-derived histograms to
understand their genesis as we understood DNA
histograms.

» Although the errors associated with regions and
ranges were still present, we turned largely a blind
eye to them because we had no alternative.

Unfortunately, is was very difficult to extend this modeling approach to multiple dimensions.
The desire was to be able to model immunofluorescence data, but the complexity of the
data and the resultant models was large enough to make computer solutions impractical.
Although most cytometrists knew that gating was subjective and error prone, it was largely
ignored because there was no viable alternative.

Bagwell
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Evolution of Bivariate Displays
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Isometric Displays

The evolution of cytometric analyses followed several pathways. The graphics associated
with represented two correlated measurements evolved from simple dot plots to more
sophisticated isometric displays.
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Partitioning Formats
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The geometric shapes that were used to partition that data into populations evolved as well.
It started with simple rectangles and evolved to much more complex polygons.
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Gating Formats
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Wayne Moore, Mario Roederer

Initially we used simple gates where a histogram was gated on events that were inside a
rectangle. Fairly early on, this process was abstracted in the Ortho 2150 computer system
and refined by Ray Lafebvre in his development of LYSYS. Over time it was found that
most immunologists wanted to divide their populations into ever smaller populations using
hierarchical or containment gates. This work was pioneered by Wayne Moore and Mario
Roederer.

Bagwell
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Gating, A House of Cards
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But the reality was that simple boundaries work well if the populations are separated. If the
populations had overlap or contained transition events, then this methodology had the
same kinds of errors that were unacceptable for DNA histogram analysis. The other issue
at play was that as the number of correlated measurements grew, the number of two-
dimensional surfaces to draw gates on grew geometrically. It was a house of cards that

was about to fall...
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Let’s Go Back In Time
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Knowing what we now know about modeling complex systems, it would be wonderful to go
back in time and change how we initially viewed the modeling process as it pertained to
cytometric DNA histograms. We were a lot closer to the correct solution than most people

realize.

Bagwell
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What is a DNA histogram?

|
ack----- 1 (‘%
g

DNA Content
U 1
1
@
N
=

1
[
26 - —-r----
G1 1 S :
: : Mack Fulwyler, mid 70's
0 Cell Age 1  Ideal DNA Histogram
A G1
£
S
> | G2M
0 Cell Age 1 DNA Content

If we could go back in time, | would come up to Mack after he gave his talk on what a DNA
histogram is in and talk with him. | would say something like, Mack, | enjoyed your talk, but
| think | can show you a much better way of understanding and analyzing DNA histograms.
Mack might say something like, “OK, let’s hear it.”

First of all, Mack, if you eliminate Cell Age and do the modeling in measurement space,
modeling will essentially be relegated to the one-dimensional world of DNA histogram

analysis for over 30 years. So, let’s begin by not eliminating Cell Age and get rid of this
concept of the Ideal DNA Histogram. This path doesn’t lead us to where we need to go.

15
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Don’t Eliminate Cell Age
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1 We don’t know this function.

0 Cell Age

We don’t need the concept of an Ideal DNA Histogram to create cell cycle models. The
next thing | would tell Mack is that his relationship between Number and Cell Age is
idealistic at best. Itis much more complicated than a simple exponential. Cells slow down
their dividing as nutrients and oxygen become limited. Some cells die and others move
away from our sample space; while other types of cells migrate into our sample space. The
reality is that since we can’t normally measure Cell Age, we don’t know the number of
events relationship with Cell Age. Essentially, what we wish to do is model a kinetic
process but not use time or relative time in our model since we can’t measure it. The
simplest way for us to proceed is to change our x-axis to something we can measure.

“OK, that makes sense, so what should it be?”

16
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Redefine Cell Age

et 1 1 .
3 L 5
g4cf----- T - = —— 5
W
©2c - ---- -
% G1 1S
1 1
0 1 1 Mack Fulwyler, mid 70’s
0 1
a; n Defined Relationship We define the density to he constant]
=) 1 Intercept, n, is the number of events
g IH I- measured.
3 Gl , S | G2™m
1 1
0 1

What we can do is define the Number relationship such that it has constant cell density all
the way along the x-axis (see above). Since our boundaries are 0 to 1, this means that the
y-axis intercept is simply the number of events measured or n.

Mack puts his hand on his chin and says, “well, if you are going to make that definition, then
the boundaries between G1 and S and S and G2M will need to change.”

That’s right, Mack, let’s change these boundaries to where ever they need to go to be
consistent with our data (arrows).

17
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Cumulative Fraction
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Notice, Mack, that these boundaries are now at the fraction of G1 (fG1) and the fraction of
G1 plus the fraction of S (fG1+fS). In other words, as soon as we defined the constant
density relationship, our x-axis changed to cumulative fraction. Just to make this concept
clearer, let’s use a specific example. If the fraction of G1 in our population were 0.6, then
the first G1/S boundary would be placed at 0.6. If the S-phase had a fraction of 0.15, then
the second S/G2M boundary would be at 0.6+0.15 or 0.75.

“OK, | see that”, Mack says. “But that means that our DNA Content vs. Cumulative
Fraction function needs to be changed as well for the model to be totally consistent.”

That’s right, Mack, let's make that change as well.

18
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Measurement and biologic variability
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At this point, Mack, we have a consistent model of cell cycle involving two relationships with
Cumulative Fraction.

“OK, Bruce, I'm liking this so far. What's next?”

The next enhancement to your DNA histogram story involves how you introduced the
variability of the measurement and biology into the model. The correct way of doing it,
Mack, is to integrate that information into this model at this level. We can do this by
providing our model with 95% confidence limits. In the case of DNA content measured with
linear amplifiers, this means that the width of our 95% confidence limits will increase as
DNA content increases.

“Bruce, | can see that this model now captures all the essential information that is contained
in a DNA histogram, but what is troubling me is how are you going to fit it to the observed
data?”

Mack, there are a few more steps we need to take before we're ready to do this.

Bagwell
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We can merge the DNA Content
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probability distribution.

DNA Content

How do we generate DNA histogram
data using this model?

Random Pick Repeat thousands of times.

0 Cumulative Fraction / Progression 1

The first step is that we can merge the DNA Content and Number axes together by creating
a probability distribution from both of them. If we were to look at this function using colored
contours, it would look as shown above. This one plot merges cumulative fraction or
progression (x-axis), DNA Content (y-axis), and probability (z-axis).

Before examining how to analyze the data, it's easier to first see how this data structure can
generate DNA histogram-like data. Models should be able to generate as well as analyze
data. The procedure is quite simple. First, we randomly choose a location along the
progression axis (1). Given this location, we use the probability distribution at this location
to randomly pick our DNA Content (2). This means that we are using the probability
information in the vertical direction to appropriately choose the DNA Content value. If we
repeat this procedure thousands of times, we produce a set of data that is very much like
the data we obtain when we measure cells for their DNA content.

20
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DNA Content Parameter Profile
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“OK, Bruce, | think | can visualize the synthesis process, but I'm still troubled by how all this
allows us to fit our model to an observed DNA histogram? “

It turns out, Mack, that if you reverse this random picking process, you set the stage for
analysis. By reversing, | mean that when you observe a single DNA content value (y-axis),
you use the above probability distribution to randomly pick a horizontal position (1) along
the progression axis. Usually we bin this axis into a set of 100 states. If you repeat this
process thousands of times, you will obtain a uniform distribution of state frequencies if the
model is consistent with the observed data. This is not an approximation, Mack. If the
model and the data are consistent with each other, the resultant state frequencies will be as
uniform as possible given counting error.

We can quantify how uniform this distribution is use this as a model response function to
search for the best model parameters. That’s how the system can fit observed data to our
new model. We call this approach Probability State Modeling or PSM.

21
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Movie of the synthesis and
analysis of DNA content data
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Mack scratches his head and says, “It all seems to make sense, but it would be extremely
helpful to see this process in action.”

It just so happens, Mack, that | brought a movie of both the synthesis and analysis of data
to help visualize this process.

Bagwell
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DNA Synthesis and Fitting
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Accuracy Results (PSM vs. CCA)
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For the most analyses, both PSM and CCA give estimates that are
comparable in accuracy.

“l see how this works now, Bruce. Just as a point of curiosity, how accurate is it in
estimating %G1, %S, and %G2M as compared to the more traditional modeling methods?”

If we compare the computed errors using chi-square statistics for Probability State Modeling
(PSM) and Cell Cycle Analysis (CCA), we find that in general both methods produce
analysis results that are quite comparable. PSM does have a few advantages over CCA,
however. With traditional modeling, if you have two model components of similar shape
that are overlapped, CCA will become unstable and yield unreliable results; whereas, PSM
simply assigns each model component equal numbers of events and is perfectly stable.

24
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“l assume, Bruce, that you're showing me this new approach because it does something

that traditional modeling methods can not.”

That’s right, Mack. We are now in a position to model data with numerous correlated
measurements. By defining our model as we have, we can potentially model any number
of markers that modulate over some progression. This is something we were never able to

do before.

We can theoretically add any number of markers we want to our model of progression. The
first marker could be DNA, but it could be any other relation as well. It's also very easy to
extend the algorithms to either synthesize data from all these parameter profiles or to

analyze them.

Bagwell
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A single graph representing all correlations

Many
Events

Single Overlay Plot
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Multiple Parametric Plots the measurements

“How do you represent all this information graphically after you’ve modeled the data?”

After many events are processed in this manner, we end up with tracks of events in each
parameter profile plot as shown above. Each one of these tracks has statistically
determined 95% confidence limits for each state, forming a data envelop. These data
envelopes can be scaled-down and co-plotted on an overlay as shown to the right where
the common vertical axis is %Relative Intensity and the common horizontal axis is
%Cumulative Fraction or Progression. This one graph summarizes all the correlations
between the measurements as well as all the important stage statistics.
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Relatively simple
to analyze complex data
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“Just a few more questions, Bruce. It seems to me that it should be very complicated to
figure out the proper parameter profile to use for each measurement. For DNA, it was easy
since this is a well-known relationship to most biologists. But some of the new markers are
not so well-known. How do you handle this complexity issue?”

It ends up that it is far easier to model these complex populations than you might think.
Mack, the way to get at this answer is to use a hypothetical example and see how to apply
the technique of probability state modeling to it. Let’s say we have some five-color data
that looks at five markers (A, B, C, D, and E) for two hypothetical populations. To get
started we need to know that the population of interest for us has a lot of C marker on its
surface (C+). We refer to this as our selection marker. To tell the system we’re interested
in C+ we use a constant parameter profile that selects for the events of interest (1).

We then choose a relation that we do know something about. In this case, suppose we
know that Marker A is up-regulated in our progression much like our DNA content example
and we model it as we did our DNA (2).

27
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Relatively simple
to analyze complex data
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The system quickly cascades to modeling the entire
system of parameter profiles with a minimum of
up front information.

What happens next is really quite amazing. Once the system has modeled Marker A, it has
partially ordered the events along the x-axis. This means that when we look at Marker B,
we can usually tell how it varies with A without any a priori knowledge. The decision of how
to model Marker B can be entirely automatic (3).

After it has finished with B, it now can use both the A and B information to better define D.
An appropriate parameter profile can then be chosen for D completely automatically. This
process continues until all the markers have been modeled.

“You don’t have a movie that shows this process in action do you? “

Of course | do...

Bagwell
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Movie of a simple example of fitting
multiple correlated measurements
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High-Dimensional B-Cell
Lineage Modeling

Completely Automated Analysis
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“OK, Bruce, let's see some actual applications with some of the instruments capable of
taking numerous correlated measurements.”

The first application we applied this technique to was modeling the B-cell lineage in human
bone marrow. When examining normal B-cell lineage progression, it is quite impressive to
see the sharp transitions that B-cells go through in the bone marrow. When the
dimensionality issue is eliminated, it is easier to appreciate the genetic program at work.
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High-Dimensional T-Cell Ag-
Dependent Progression

Completely Automated Analysis
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Another application is the changes in CD8 T-cells as they interact with specific antigens in
the peripheral blood.
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PNH Application

Automated Detection of GPI-deficiency in Paroxysmal Nocturnal Hemoglobinuria (PNH)
Benjamin Hunsherger?, David Miller?, C. Bruce Bagwell*
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This slide shows a PNH abstract and poster shown at CYTO 2011 by Ben Hunsberger
demonstrating how PSM can automate this widely ordered test. Interestingly, these models

have no progressions at all.
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Stem Cell Enumeration

Using GemStone™ in the Routine Analysis of Clinical Stem Cell List-mode Data

Bruce Greig ', David Miller , Donald Herbert *, C. Bruce Bagwell *
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Stem cell enumeration, CYTO2011 abstract and poster by Don Herbert, is another example
of the PSM automation capabilities where the models have no progressions.

Bagwell

33



Modeling Kinetic Processes Without The Benefit Of Time As A Measurement

How do you visualize abnormal
or perturbed populations?

#-Cell Linaage

= Stg2 Stg3
[R1 Abnormal 1 0.0180%11 .Abnormal 10.0180% R3: Abnnrmal IR3: Abnormal 3 0.0419%1]
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Distance From Model

Highly sensitive method of finding populations
that for one reason or another are not normal.

“l can see that using PSM allows the modeling of any number of markers in progressions,
but it is many times valuable to see perturbations from normal such as T-cell activation or
B-cell malignancies. How do you visualize these processes?”

In 2010 we showed that one can visualize populations that somehow don’t belong to the
normal model by the use of a specially designed chi-square heat map. Essentially, an
event’s distance from a model can be quantified by means of sum of chi-squares. This
distance along with its position along the progression axes defines the populations in the
heat map display. Since the events that are within the 95% confidence limits are
subtracted in the heat map, this display has the capability of finding very rare events. The
three abnormal populations shown above have frequencies in the 0.02 to 0.05% range.

Of course, the next question that we want to know is what is exactly abnormal with these
populations.
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Combinatorial Analysis

Combinations of binary states from gates
Jim Wood Mario Roederer

FCOM
WinList

e
I Ty
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Combinations of trinary states from modeling
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The first comprehensive method of finding all phenotype combinations was the PRISM
board designed by Jim Wood and the EPICS Division team. Later, in the 1990’s, this type
of logic was generalized to include the results of boolean gates with WinList's FCOM logic.
More recently, Mario Roederer has used the same kind of logic and generalized it to
include patient group averaging and the use of pie charts to graphically represent all the
phenotypes.

Modeling of progressions offers the opportunity to extend the concept gates (in or out) to
three states (normal, lower-than-normal, and higher-than-normal). Also, these calculations
can be applied within specific stages of the progressions referred to as zones (see above
slide, bottom). Probably most important, however, is that since it is a result of modeling, all
boundaries are positioned automatically with no human bias.
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TriCOM Graphics — What’s abnormal?
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to stage 1.

The Heat Map display shows us that there are abnormal populations present, but what are
their phenotypes? The TriCOM display systems shows all the phenotypes by using
multiple ring pie charts. The TriCOM x-axis depicts the stages of the modeled progression.
In this B-cell example there are three stages. The y-axis quantifies the number of abnormal
marker expressions in each phenotype. The key at the bottom shows how to interpret the
phenotypes of the abnormal populations. For example, solid blue (E) represents higher
than normal CD38; whereas, low density blue (e) represents lower than normal CD38.
Reading from the outside ring to the center, the top-left pie chart shows that there is an
abnormal population in Stg1 that is high for CD10 and CD34, but low for CD38. The other
two abnormal populations are detected as well. The percentages above the pie charts
quantify the abnormal phenotypes for B-cells and total cells. Multiple phenotypes at the
same stage and number of abnormal markers are represented as slices in the pie (not
shown above). This one graph allows the inspection of all abnormal phenotypes that may
be present in a sample.
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Cellular Kinetic Processes
- where time is difficult to measure-

Branched and Linear Progressions

Circular Progressions
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James Jacobberger, “The Finite State Cell
Cycle Model”

In our particular technology, we can use PSM to learn more about how cells do what they

do. We can apply it to circular progressions such as the cell cycle (left) or linear
progressions shown at the right. You can even model branched progressions now
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Celestial Kinetic Processes
-where time is also difficult to directly measure -

Life Cycle of Stars
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Any time it is difficult or impossible to measure time and you want to model the kinetic
process, probability state modeling can be used. It works best when there are many
measured objects with correlated measurements.
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Clustering

Always has shown great promise
because it is scalable to any number
B of correlated measurements..
2Bl CD45RA
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] necessitated inspection of hivariates.
Science, Vol 332, 2011

Some of these limitations may
have been solved by SPADE.
Sean Bendall, et al.

| should make a few comments about clustering before leaving this lecture. Clustering has
always shown great promise since it scales very well with number of correlated
measurements. Initially Gary Salzman and Robert Murphy explored its potential in
cytometry starting late in the 1960’s and published a number of papers and chapters
through out the 1970’s and 1980’s. Since then, there have been numerous different
strategies proposed for clustering, but it really has never become mainstream. | suspect
the reason for this is three-fold. The first issue is that clustering algorithms many times
divide well-known populations into multiple parts and also many times fails to find low-
frequency continuums that connect the clusters. The second issue is that clustering
generally has a number of user-defined parameters that can radically change the final
solution. The animation shows an example of how the boundaries around clusters can
suddenly and dramatically change. The third issue is more insidious. After the clustering
algorithm has identified the clusters, the next question is do these cluster represent. Since
most clustering algorithms are devoid of biologic information, the user or biologist must use
traditional methods to identify the found clusters. If clustering is suppose to be a solution to
the dimensionality problem, requiring the inspection of bivariates to understand the
meaning of the clusters is not really a solution that will work for very high-dimensional data.

Recently, a new clustering method has been devised by Sean Bendall at Stanford that may
obviate some of these limitations. Since it creates numerous micro-clusters via a process
called agglomeration, it may not have a tendency to eliminate the continuums between
populations that we normally use to understand the meaning of the data. Also, it looks as
though it has some biologic constraints so that the cluster interrelationships are
immediately evident by someone with some knowledge of the biologic process being
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studied. However, it is new and it is not yet known how sensitive it is to subjective user
decisions and how automated it can become over the next few years.

Bagwell
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Summary

When we decided to model DNA histograms directly in the early
1970’s, modeling was too complicated to be applied to more
than one correlated measurement and thus was mainly
relegated to DNA histogram analysis.

As a consequence of the early limitations of modeling, gating
evolved considerably in cytometry even though it is inherently
inaccurate and subjective.

If we use cumulative fraction instead of Cell Age, we can
construct a mathematical model that embodies both DNA
content changes and variability as a function of cell cycle
progression. This type of model is called a Probability State
Model or PSM.

It is very easy to extend PSM to any number of dimensions.
Once the data is modeled, all correlations of measurements in
progressions can be summarized in an easy-to-read graph.

Once we have modeled what it means to be normal, it is
possible through a chi-square heat map or TriCOM to visualize
populations that are somehow not normal.
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Verity Team

Donald Herbert, Technical Support

Benjamin Hunsherger, Genaral Manager

Mark Munson, Sales
Lol E=L,

The Verity team made the creation of Probability State Modeling possible. Thanks guys!

41



Modeling Kinetic Processes Without The Benefit Of Time As A Measurement

Bagwell

42



